Avoidance of Neoclassical Tearing Mode Locking and Disruption by Feedback-driven Mode Rotation Control

<u>M. Okabayashi</u>¹, E.J. Strait², A.M. Garofalo², J.M. Hanson⁴, Y. In³, R.J. La Haye², D. Shiraki⁴, and F. Volpe⁴

¹Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451, USA.
 ²General Atomics, PO Box 85608, San Diego, California 9186-5608, USA.
 ³FAR-TECH, Inc., 10350 Science Center Dr., San Diego, California 92121-1136, USA
 ⁴Columbia University, New York, New York 10027, USA

Theory and Simulation of Disruptions

M. B. Gottlieb Auditorium Princeton Plasma Physics Laboratory, Princeton University July 17-19, 2013

Feedback driven mode control

Motivation

Tokamak reactor requires:

- Assurance of NTM/TM locking avoidance is prerequisite for orderly shutdown such as the termination of hundreds Mega Joules of magnetic stored energy.

 Injection of the electro-magnetic (EM) torque using 3D coils by forcing finite toroidal phase shift between the mode and applied feedback field

(1) Introduction

- Two scenarios were investigated in DIII-D: preliminary results (q95 ~ 4)

(2) Sustaining high β_N NTM - Avoidance of locking and disruption

(3) Orderly shut down process by reducing NBI power -working as Dynamic Error Field Correction as well as NTM locking avoidance

(4) A Simple Model

- Comments

(5) RFX-mod/tokamak explores independently TM-disruption avoidance with similar feedback approach → Feedback scheme seems robust

(6) ELM-like MHD bursting clouds are synchronized with NTM (possible impact on disruption process)

(1) Introduction

- Two scenarios were investigated in DIII-D: preliminary results (q95 ~ 4)

(2) Sustaining high β_N NTM - Avoidance of locking and disruption

(3) Orderly shut down process by reducing NBI power -working as Dynamic Error Field Correction as well as NTM locking avoidance

(4) A Simple Model

- Comments

(5) RFX-mod/tokamak explores TM-disruption with similar feedback approach
 A reliable way for EM torque injection with 3D fields

(6) ELM-like MHD bursting clouds are synchronized with NTM (possible impact on disruption process)

- Summary

Feedback-driven torque control maximizes the electro-magnetic $\delta B_{p,mode} \times B_{r,ext}$ torque

Feedback radial field phase can be synchronized with the poloidal field component of NTM by adjusting feedback parameters, such as gain G and filtering time τ_p and presetting of initial phase shift, ϕ_0

RWM control feedback functions for torque control and locking avoidance

(1) Introduction

- Two scenarios were investigated in DIII-D: preliminary results (q95 ~ 4)

(2) Sustaining high β_N NTM - Avoidance of locking and disruption

(3) Orderly shut down process by reducing NBI power -working as Dynamic Error Field Correction as well as NTM locking avoidance

(4) A Simple Model

- Comments

(5) RFX-mod/tokamak explores TM-disruption with similar feedback approach
 A reliable way for EM torque injection with 3D fields

(6) ELM-like MHD bursting clouds are synchronized with NTM (possible impact on disruption process)

- Summary

The phases of feedback current and mode δBp became "nearly in phase", producing max. torque, when the mode frequency was reduced to the order of $\approx 1/\tau_{p.}$

8

NTM mode-locking can be avoided

FB turning-off leads to a locked NTM and disruption

The toroidal phase offset determines the direction of mode rotation (phase shift from +30 deg \rightarrow -30 deg)

EM torque input is sufficient enough to avoid ITB collapse disruption even when the density is pumped out by NTM

139605_ti_cont_nrs_ip_prep_4.ai

Feedback_driven_mode_control

(1) Introduction

- Two scenarios were investigated in DIII-D: preliminary results (q95 ~ 4)

(2) Sustaining high β_N NTM - Avoidance of locking and disruption

(3) Orderly shut down process by reducing NBI power -working as Dynamic Error Field Correction as well as NTM locking avoidance

(4) A Simple Model

- Comments

(5) RFX-mod/tokamak explores TM-disruption with similar feedback approach
 A reliable way for EM torque injection with 3D fields

(6) ELM-like MHD bursting clouds are synchronized with NTM (possible impact on disruption process)

- Summary

When the NTM is suppressed, the system functions as DEFC. -current max. location shifts with sensor shift from +30° to -30° deg

Feedback controls the NTM/TM in an orderly shut down process

Maximum torque "near 90°" was provided by feedback even during lock/unlocked period

Feedback_driven_mode_control

FB turning-off leads to a locked NTM and disruption

Feedback assisted reproducible smooth landing to lower β_N stage when NBI is terminated.

(1) Introduction

- Two scenarios were investigated in DIII-D: preliminary results (q95 ~ 4)

(2) Sustaining high β_N NTM - Avoidance of locking and disruption

(3) Orderly shut down process by reducing NBI power -working as Dynamic Error Field Correction as well as NTM locking avoidance

(4) A Simple Model

- Comments

(5) RFX-mod/tokamak explores TM-disruption with similar feedback approach
 A reliable way for EM torque injection with 3D fields

(6) ELM-like MHD bursting clouds are synchronized with NTM (possible impact on disruption process)

- Summary

A unique feature of this approach: Presetting the phase offset leads to max. torque in the given direction

A simple model

• Torque balance equation:

A cylindrical model

Assuming the geometrical factors: the wall, sensors and coil are located close to the plasma surface

$$Torque Input: A(\omega) = \text{Im } aginary \left\{ \left(\frac{-i\omega\tau_w}{(i\omega\tau_w+1)} + \frac{G\exp(i\phi_0)}{(1+i\omega\tau_w)(1+i\omega\tau_p)} \right) \left| \delta B_p \right|^2 \right\}$$
$$A(\omega) \propto \frac{f}{g}$$
$$f = -(\omega\tau_p)^3 (\tau_w/\tau_p) - (\omega\tau_p)(\tau_w/\tau_p) + G\sin(\phi_0)(1-(\omega\tau_p)^2(\tau_w/\tau_p)) - G\cos(\phi_0)(\omega\tau_p)(1+(\tau_w/\tau_p))$$

$$g = (1 + (\omega\tau_p)^2)(1 + (\omega\tau_p)^2(\tau_w / \tau_p)^2)$$

The toroidal shift ϕ_0 preset determines the direction of mode rotation

$$A(\omega) \propto \frac{f}{g}$$

$$f = -(\omega\tau_p)^3 (\tau_w / \tau_p) - (\omega\tau_p) (\tau_w / \tau_p) + G \sin(\phi_0) (1 - (\omega\tau_p)^2 (\tau_w / \tau_p)) - G \cos(\phi_0) (\omega\tau_p) (1 + (\tau_w / \tau_p))$$

$$g = (1 + (\omega\tau_p)^2) (1 + (\omega\tau_p)^2 (\tau_w / \tau_p)^2)$$

with $\omega \rightarrow -\omega$ together with $\varphi_0 \rightarrow -\varphi_0$

- Torque balance: $f(\omega) = 0$
- Stability of the torque balance: $\partial A/\partial \omega < 0 \rightarrow \partial f/\partial \omega < 0$

Both remain intact

 \rightarrow toroidal shift ϕ_0 preset determines the mode direction.

The model predictions are consistent with key experimental observations

(1) Introduction

- Two scenarios were investigated in DIII-D: preliminary results (q95 ~ 4)

(2) Sustaining high β_N NTM - Avoidance of locking and disruption

(3) Orderly shut down process by reducing NBI power -working as Dynamic Error Field Correction as well as NTM locking avoidance

(4) A Simple Model

- Comments

(5) RFX-mod/tokamak explores TM-disruption with similar feedback approach
 Feedback approach seems robust for EM torque injection

(6) ELM-like MHD bursting clouds are synchronized with NTM (possible impact on disruption process)

- Summary

RFX-Mod-tokamak also successfully avoided TM-locking and disruption by feedback-driven EM torque control - The feedback approach seems robust--

(1) Introduction

- Two scenarios were investigated in DIII-D: preliminary results (q95 ~ 4)

(2) Sustaining high β_N NTM - Avoidance of locking and disruption

(3) Orderly shut down process by reducing NBI power -working as Dynamic Error Field Correction as well as NTM locking avoidance

(4) A Simple Model

- Comments

(5) RFX-mod/tokamak explores TM-disruption with similar feedback approach
 A reliable way for EM torque injection with 3D fields

(6) ELM-like MHD bursting clouds are synchronized with NTM (possible impact on disruption process)

- Summary

Fast MHD bursts are located on one side of propagating slope of 18 Hz NTM

Feedback_driven_mode_control

The bursting MHD behavior is similar to the ideal mode excited by the increased pressure gradient as observed in TFTR

PRL 1995, Vol 75, p1765 by W. Park, E. Fredrickson et al.,: ballooning mode excited by internal kink

FIG. 7. The experimental ECE signals.

Summary

- NTM-locking disruption avoidance by feedback-driven mode control has been developed in DIII-D.
 - proof of principle: demonstration with two β_N levels
 - (so far with $q_{95} \ge 4$)

- key elements: forced toroidal shift, built-in DEFC

- Independent achievement by RFX-mod / Tokamak implies the feedback-based EM control is robust.
- This feedback-based EM control scheme is useful, for example,
 to provide orderly shutdown of magnetic energy
 - to avoid the frequency range of mechanical resonances
- Theoretical analysis of ELM-like MHD synchronized with NTM is important to understand NTM-locking and its disruptions

13.7.18

supplement

The reversed order of preset Φ^0 shows similar intrinsic rotation (preset toroidal shift from -30 deg \rightarrow +30 deg)

Comparison of model and experiments

• Predictions with a simple model are consistent with various observations

- asymptotic rotation : $\omega \tau_p \sim [G(\tau_w/\tau_p]^{1/2})$, less sensitive to details feedback settings)

• Presetting phase shift, Φ₀ improves:

- separate degenerated branches near ω zero and decoupling from other modes, enhancing the stability of branches,

After the NTM is desynchronized, it can be re-synchronized when the amplitude grows

Accelerating torque sustains high $\beta_{\rm N}$ discharge even with a large global MHD event

