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Outline

Final step before full toroidal, resistive MHD control study:
Linear cylindrical tokamak model with finite ! for control of
RWM using a combination of normal and tangential magnetic
field measurements

Comparison of Full Resistive MHD with diffuse profiles
compared with Analytic Reduced MHD in step function profiles,
facilitates understanding of the origin physics results

Marginal stability values ! jp rw <!rpiw <'iprw <'ip.iw
(resistive or 1deal, plasma or wall) indicate transition points
Imaginary gain ! plasma rotation stabilizes below ! rp jy because
rotation supresses the diffusion of flux from the plasma out
through the wall

More surprisingly, imaginary gain or rotation destabilizes above
! 1p.iw because it prevents the feedback flux from entering the
plasma through the resistive wall.

Method of using complex gain to optimize in the presence of
rotation for ! > 15 jw.



Full MHD Computation compared with Reduced MHD Analytic
model for Intuition

Model 1: Reduced MHD

Model 2: Full MHD

stepfunction profiles
Jzo(r)= 2!( a;" r) and
Po(r) = po(O)!( &" r).

smooth profiles
: _ 2
Jzo(r) = (1+(1 /a1)8)>? from
Furth, Rutherford, Selberg
(Flattened) and

— Poo
Pol0) = Gy

Ideal outer region, Tearing layers
either RI regime ("g#)%/4" " 4

or VR regime "y# 1

Plasma resistivity, viscosity
constant: S= 10°" 10°,
P=0.01

al < rt 1

& Pressure drive outside i enhances wall interaction;

(somewhat mimics toroidal external kink)

Resistive wall by thin wall approximation. "#,$(ry) =| $-¢f|rw

Feedback by control equation. $(rc) = " G$(ry)+ K& (ry" )

Rotation by Doppler shift. "4 $ " + i#.




Equilibrium Models are comparable
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Model 1: Reduced MHD

Model 2: Full MHD

81—058.2 O8I’W—1I’C
1.5,q(0)= 0.9

8.1—055612 O7rw=er:
1.5, q(0) = 0.8.

q(r) = g(0) forr < a; and
q(r) = q(O)% for r > a; where
g(0) = Bg/R and R is the major

radius

B, (r) from radial force balance

jtyaszo " ijBO/cD = pg(r) by
BQZO«_ + Poo ™ Po(r)”
0 JzO(rﬁ Boe(rdr”.

Bo = B;0(0) specifies q(0)




Model 1: Analysis simplified to a matching problem between
regions

Outer region

mify(n) g, 2M°Bi(NREN)
rF(r) B5r3F(r)?2

=" A&(r" a1)$" B&(r" a)¥

Solution can be expressed by a basis set

F(r)="151(r)+ " 2952(r)+ ' 353(r)

Ve =

$

With matching conditions at
"k E(re) = $'# ., Tearing layer

" (rw) = $'# Resistive wall

$(re)=" GH(rw)+ K$(ry" ) Feedback



Model 1: Basis functions allow for analytic solution construction

Basis function method (from early Culham years?) of separating
the solution into zones with superimposed solutions shielded
from neighboring resonant surfaces or conducting walls.

Further separating the solution into the plasma response ($1) and
the resistive wall / control coil external solution ( $,) simplifies
the analysis into a 2x2 matrix structure for coefficients of $; and
$5. ($3, the control flux then determined)



Model 1 : Simple 2x2 Matrix Structure offers Intuitive

Understanding
For VR regime
# S0 &
1 1 11 lld#_t |21 " 1 1 _ O
2" Kzl " 2" "#y" Gho+ Kl "2

VR:# ! S?/3forPr= 1
) 1 — OIS at | rp,iW
! 2 = OIS at | ip’rw.
Equivalence of wall rotation and G (Finn-Chacon 2004)
For RI regime # ! S3/% and "g# & ("g#)>/*
For VR or RI can in principle stabilize up to ! jpjw (" 1 =" 2= o)

using both G and K.



Model 2:

Full MHD model includes finite ! , compressibility,
parallel dynamics, resistivity, viscosity

o
W= V' B ' Bo+ijo' B" Vp+ (VA

) *
||§:V| ’\‘l'l BO" )Vl é

"B=" waVpy" $poV &

Finite difference discretization (with variable grid density) leads to
the standard matrix form:



Model 2: Boundary Conditions in Full MHD: Resistive Wall and
Control

Boundary conditions at resistive wall include effect of control coil and
complex gain, equivalent to reduced model

"q4Br(rw) = ik 8Bow
IMv& /t + r*(Wy/r) = 0
kv + *. v = 0
*(rBoy" imB;, =0
"aP =" % rpo(rw) " $po(rw)(Vav)r,

"HyBr = | Bﬂrw

B}(rc) =[" (G " K)B_r(rw)"' KrwB_r#(rw" )]/rc



Results: " vs. ! showing ! \p w <!piw <'iprw # !ipiw ;5 analytic
and numerical

x107°

0.02
b) S=1x10°
Full MHD Pr=0.01

a)
Reduced MHD

rp,rw  rp,iw

0.1

! Growth rate " for the analytic model (a), with
At!piw,  1equalszeroandat!ipny, " 2 equals zero.

' Numerical results in (b), showing ! rp rw = 0.04! 5 jw = 0.11,
and ! ip,rw o ip,iw -

! Large 1deal limits are due to diffuse profiles (computaitonally

advantageous), while the focus is on the lower limits ! 5 v and

! rp,iw -



In toroidal (DIII-D) configurations the upper limits at far lower
|, limits in same order
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Next steps: resistive wall and control in toroidal. For now: cylindrical.



G-K Maps with ! = G; = K; = 0 Show similar structure between
reduced and full MHD models

(b) ()
25 25

! (a) Analytic model with ! g = 0.025 0.075 0.15, and 0.223 The
left boundary is vertical at ! g = 0.101= !y jy .

' (b) Full MHD with S= 1 with ! ¢ = 0.07,0.09, 0.11=! 1 ju,
and ! g = 0.13, and the left boundary is indeed vertical at ! rp jw .

' (c) Full MHD with S = 10° with the same ! o values as (b) and
the left boundary is also vertical as ! p jw = 0.121s crossed.

I Qualtivative structure of the maps is captured by reduced MHD
(a). Both results have vertical line at ! 1 jy . Effects of #, Kj and
G change above ! (p jw,where # becomes destabilizing.



Results qualitatively similar between Analytic and Full MHD
models for ! <!,y : Increasing # Stabilizing
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' (a) Analytic with ! o = 0.068< !\ jw = 0.101

! The results show that increasing # increases the stable area for
o <!ip,iw €xcept for small #.



Results: | > 15y where # is Destabilizing; analytic and
numerical

(b)
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S= 10, G = K; = 0 and varying rotation #.

(a) simplified model with ! ¢ = 0.12 (b) full MHD model with

! 0— 0.13.

The plasma Doppler shift frequencies in (a) and (b) are

#= 0, 0.001 0.003 0.005

These results show that for ! o > ! j the stable region shrinks
as |#| increases.



Given a particular # , Gi can optimally counter and have the

largest stable window equivalent to # =0; analytic and numerical

(@) (b)

5 G=15
I
QOZO.OOS

!
10 5 0 5

In (a) we have reduced MHD same as above except for the wall
time, which is made equal to the numerical case, #y = 2’ 104,
and G = 15,30,45,60.

In (b) we have full MHD with parameters same as above, with
G = 0, 20, 40, 80.

There is an optimal value of G;; for this value the effective wall
rotation rate #, 1s equal to # and the stable region is
maximized. G equivalent to #y.



Analytic Results: With # = 0, finite K; is destabilizing for

@ (b)
5 — 25 -

Stability diagrams for the reduced MHD model only
(@)!o=0.068<! 1w withK; = 0,2 £4
(b)!o=015>!pjw withK;j =0, 1, +2

In both regimes of ! o, K decreases the size of the stable region.



With G = 0, #= 0.005 K is destabilizing for ! <!,y ; analytic
and numerical
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I (a) Reduced MHD model with ! ¢ = 0.068
! (b) the full MHD model with ! ¢ = 0.09,

| Optimal value of |K;| is small and larger values destabilize in the
Lo <!ypiw regime.



With G = 0, #= 0.005 Kj has an optimal value for ! >"!,y;

analytic and numerical
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! (a) Reduced MHD model with I g = 0.15
! (b) Full MHD model with ! ¢ = 0.13

! In (a) the optimal value of Kj 1s -1. In (b) the stability regions are
more complex, but optimal for |K;| small.



Summary

Feedback with complex gain G multiplying normal component
of B and complex gain K multiplying tangential component. G
and K; represent simple phase shift of coils.

Full resistive MHD model agrees with reduced resistive MHD
model using stepfunction profiles

For! <!y rotation # and G ! # stabilize, as expected. K;
stabilizes in different way

For! >,y rotation # and G destabilize K; destabilizes too

In! > 1w regime with #: can optimize the feedback stable
region by applying G such that #,, =# . There is an optimal K;
too, but no obvious equivalence



