ITER Disruption Issues

Michael Lehnen

Special thanks: K. Aleynikova, P. Aleynikov, Yu. Gasparyan¹, D. Kovalenko², R. A. Pitts, R. Roccella, P.C. de Vries

ITER Organization, Route de Vinon sur Verdon, 13115 Saint-Paul-lez-Durance, France

¹*National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia* ²*SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow Region, 142190, Russia*

Disclaimer: The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

Motivation

Motivation

Design of the ITER Disruption Mitigation System

- Finding, validating and scaling of mitigation techniques
- Final design review 2017

Preparation of ITER operation

- Disruption load validation / scaling
- Disruption avoidance (prepare plasma control)
- **DMS commissioning and optimisation**

Assessing risks during ITER operation

- Melt damage of plasma facing components
- Dust generation
- Avoiding critical EM loads
- **Energy deposition during Thermal and Current Quench**
- **Energy deposition during Runaway impact**
- **Halo currents, Asymmetries, Rotation**
- **Disruption Prediction**
- **Thermal Load mitigation**
- **RE suppression / mitigation**

Major Disruption - Divertor

L-mode 7.5 MA 30 MJ

5 - 80 MJm⁻²s^{-0.5}

H-mode 15 MA 350 MJ

100 - 2000 MJm-2s -0.5

W melt limit: 50 MJm-2s -0.5

Assumptions

Footprint broadening: Energy degradation: *0-50%* Divertor asymmetries: *2:1 (in:out)* Impact duration: *3-7 1.5-3 ms*

R.A. Pitts, JNM 2013; S. Carpentier-Chouchana, Phys.Scr. 2014

ASDEX Upgrade: broad heat flux distribution

TEXTOR limiter: broadening reduced and asymmetric

DIII-D: Divertor heat flux during VDE TQ

E.M. Hollmann et al., PoP 2013

JET ITER-like wall: low radiation levels high conductive losses

M. Lehnen et al., NF 2013

- \Box Field line tracing with effective broadening is a simplified approach to assess heat loads / melt damage
- Validation or improvement by MHD codes and by experiments is needed
- □ Characterisation of current quench transport/radiation in unmitigated disruptions is needed

Energy deposition during Runaway impact

TEXTOR: Runaway impact on limiter

*purely geometry *M. Lehnen, N. Hartmann, ITPA MHD meeting March, 2011*

Michael Lehnen – Theory and Simulation of Disruptions Workshop, PPPL, 9-11 July 2014

© 2014, ITER Organization

Energy deposition during Runaway impact

Total impact energy of runaway electrons

J.R. Martín-Solís, accepted for publication in NF 2014; A. Loarte, NF 2011

Energy deposition during Runaway impact

The causes and dynamical processes of runaway loss are not fully understood yet

JET: RE loss can occur with significant separation in time JET Pulse No 63125

MHD causing final loss?! DIII-D: suggesting kink instability but large scatter

 \Box Further understanding of runaway loss instabilities

- **Timescales?**
- **Asymmetries?**
- □ Quantitative description of energy deposition and material melting/loss
	- Impact energy?
	- Footprint?
- \Box Simulations including RE and equilibrium solver

Halo currents, Asymmetries, Rotation

DINA simulations

I. Bandyopadhyay, ITPA MHD meeting, October 2013

- Choosing different halo widths has significant impact on the results of current quench simulations
- Self-consistent description of the halo parameters is needed

ITPA MHD task launched 2013

Halo currents, Asymmetries, Rotation

Sink & source model to assess VV forces caused by current asymmetries on VV forces

Halo current distribution and waveform is prescribed using DINA 2D output, no self-consistent description

- *a) FE model with BMs and displaced plasma to allow for return currents*
- *b) Current distribution on the inner VV shell at 2Hz*
- *c) Sideways force and tilting moment on VV+BM versus frequency*

Variable current distribution \Rightarrow talk by Riccardo Roccella

Impact of τ_w on asymmetries?

H. Strauss et al., NF 2013

Halo currents, Asymmetries, Rotation

- \Box Self-consistent description of the halo region
- □ What drives rotation?
- What is the mode structure (existence of zonal flows?) and what is the link between poloidal and toroidal halo currents?
- What determines the amplitude and is there a correlation between amplitude and frequency?
- \Box Impact of plasma-wall coupling?
- Qualitative understanding: *3D MHD simulations* Experimental validation: *ITPA task led by Stefan Gerhardt*

Disruption Prediction

Neural networks and derivatives

- needs disruptions for training
- gives warning times, disruption classification to be developed
- extrapolation to new parameter range can lead to performance degradation

Single/Multi threshold detection

- "Manual" thresholds and logical combinations based on extrapolation and modelling
- JET: successful with mode lock detection
- NSTX: compound threshold tests needed

NSTX: compound threshold tests

© 2014, ITER Organization

JET: SVM trained from scratch

china eu india japan korea russia usa

Disruption Prediction

Parameters for threshold test

- Scaling points to critical island size for TQ onset
- What drives the TQ onset?
- What is the growth time and therefore the reaction time?

$$
B_{ML}(r_c) = 7.35 I_p^{1.10 \pm 0.06} \cdot q_{95}^{-0.97 \pm 0.07} \cdot li(3)^{+1.35 \pm 0.06} \cdot \rho_c^{-3.00 \pm 0.14}
$$

- Transparent and physics based approach providing warning time and disruption classification to allow appropriate action (prevention/mitigation)
- Identify disruption root causes and the evolution towards the quench
- Identify suitable parameters and establish a quantitative understanding in order to scale to ITER

ITPA MHD task led by Gabriella Pautasso

Thermal Load Mitigation (UP&EP)

He, Ne, Ar, ${\sf H_2/D_2}$ up to 8kPam³ (1.8x10²⁴ particles)

Runaway Mitigation (EP) up to $100kPam³$ (2.2x10²⁵ particles)

Candidate systems:

Shattered Pellet Injection / Massive Gas Injection

Equatorial port #08

NIMROD simulations (preliminary results) *V. Izzo et al., ITER TA C19TD48FU*

1 midplane jet, 0.5 kPam³ 1 midplane jet, 2.0 kPam³

Radiation peaking is caused by

Localised injection MHD activity **TQ**

Critical heat flux peaking:

 $\langle \text{TPF} \rangle \times \langle \text{PPF} \rangle \leq 360 \text{MJ/E}_{\text{th}} \text{ (SS)}$ 720 MJ/E_{th} (Be)

MHD Dynamics can reduce peaking / radiation heat load JET / DIII-D: toroidal radiation distribution with locked phase

DIII-D: N. Commaux and N. Eidietis, APS 2013 JET: H.R. Koslowski, to be published

- Mitigation is the last resort when a plasma becomes unstable
- Most MGI experiments have been done with well-defined, healthy plasmas
- The database has to be extended to "unhealthy" plasmas as their properties can significantly impact on the mitigation efficiency
- Modelling of the impact on thermal/EM/RE load mitigation is required

ASDEX-Upgrade

- pre-existing TMs tend to decrease pre-TQ duration
- this can reduce fuelling and mitigation efficiency

□ Further understanding of TQ processes needed to predict mitigation efficiency and radiation loads

Comparison SPI/MGI:

penetration/assimilation, MHD, mitigation efficiency (combination of MGI and solid pellets an option?)

 \Box Mitigation efficiency in "unhealthy" plasmas?

Runaway generation unlikely during unmitigated disruptions *JET ITER-like wall* \rightarrow slow current quench / low electric fields

Load mitigation has to avoid runaway electron formation

 sufficient suppression of primary RE generation confirmed feasible in existing devices, but very strong avalanche in ITER!

Activated phase: additional sources for primary runaways *suppression of avalanche essential*

original avalanche model: $n_c \sim 10^{22}$ m⁻³ Ar, Ne with assimilation > 20% $\frac{1}{4}$ eddy current limit!

● Recent flat-top experiments (ITPA) observe drop in HXR for E $<$ E $_{\rm c}$ / 3-5

Position control

would allow techniques with longer timescale

f feasible with in-vessel coil for $I_{RE} > 2/3 I_{P,0}$ only (15 MA)

Position control

Magnetic perturbations

 field from ELM in-vessel coils not sufficient destabilisation of MHD during CQ were unsuccessfully ↓ tested in ToreSupra, ASDEX Upgrade

Position control

Magnetic perturbations

Wave excitation

Magnetised waves led to instabilities in experiments with low density or high RE current density ITER: $T_e > 20$ eV at 1MA/m² and $n_e \approx 1 \times 10^{20}$ m⁻³ *Breizman/Aleynikov*

- Strong magnetic fluctuations in the current quench can prevent from RE beam formation
- R&D needed to understand the drive *(S.Newton, G.Papp, EPS 2014: TAE)* and to assess implications for RE formation in ITER

Runaway electron mitigation by collisions

DIII-D: high-Z impurities increases runaway current decay

Similar observation in Tore Supra

JET, TEXTOR: steady decay of RE current

Note: DIII-D experiments with current control

Kinetic simulations: E_{RF} dissipation by high-Z impurities *increased pitch angle and synchrotron radiation**

Energy loss channel: RE spectrum in ITER and in present experiments?

Kinetic Simulation *Aleynikov, RE workshop, Chalmers, June 2014* **RE loss power** 0.1 80 synchrotron RP model Kinetic Energy, P_{av}*w (a.u.) 70 0.08 Argon, no synchrotron $= 0.05$ 0.01 Argon and synchrotron collisions + 60 **Bremsstrahlung** 50 $\overline{\mathbb{C}}$ $\begin{bmatrix} 1 & 0.06 \\ 0.04 & 0.04 \end{bmatrix}$ Argon (ESTAR) 40 $n_{Ar} = 10^{19} m^{-3}$ 30 20 collisions 10 Ω 0.02 15 20 25 30 35 40 45 5 10 50 0 t, $(\tau a.u.)$ $\overline{0}$ 10^{-2} 10^{-1} $10¹$ 10° $10²$ **nAr raised**RE energy [MeV]

Energy loss channel: RE spectrum in ITER and in present experiments?

DIII-D RE energy spectra

RE loss power *Hollmann, RE workshop, Chalmers, June 2014* 10^{15} 0.1 $t = 1440$ ms synchrotron 10

4
 $\frac{10^{10}}{4}$

4

4
 $\frac{10^{10}}{10^5}$ $t = 1520$ ms 0.08 $= 0.05$ 0.01 $\frac{1}{2}$ avalanche theory collisions + Bremsstrahlung $\begin{bmatrix} 1 & 0.06 \\ 0.04 & 0.04 \end{bmatrix}$ Argon (ESTAR) $n_{Ar} = 10^{19} m^{-3}$ #153993 $10⁰$ collisions 0.8 0.02 $\frac{1}{6}$ 0.6 0.2 $\overline{0}$ 0 10^{-2} 10^{-1} $10¹$ $10⁰$ $10²$ 10^{-2} 10^{-3} 10^{-1} 10^{0} $10¹$ RE energy [MeV] Electron energy (MeV)

Michael Lehnen – Theory and Simulation of Disruptions Workshop, PPPL, 9-11 July 2014

IDM UID: PQYXQ9 | Page 41

- \Box Impact of pre-TQ plasma parameters on RE generation (hot tail, TQ dynamics, …)
- \Box Sufficient suppression of primary RE compatible with thermal and EM load mitigation?
- \square Do we understand the low effective n_c in flat-top experiments and what do we expect during disruptions with $E\gg E_c$?
- \Box RE energy dissipation by high-Z collisions:
	- RE spectra in current experiments "ITER-like"? Impact of impurities that are used to trigger RE generation?
	- confirmation of timescales (RE beam stability limits)
- \Box Self-consistent simulation of primary and avalanche generation with equilibrium evolution and MGI/SPI possible?

Back-up Slides

What determines the halo width and temperature?

G. Pautasso, NF 2011

Michael Lehnen – Theory and Simulation of Disruptions Workshop, PPPL, 9-11 July 2014

IDM UID: PQYXQ9 | Page 45

Halo currents, Asymmetries, Rotation

Vertical lines: fastest τ_{CQ} in IDDB and τ_{wall} : C-Mod: 50 ms; DIII-D: 5 ms; JET: 3 ms; ITER: 400 ms

Runaway electron mitigation: Densification

- MDC-16: joint experiment to address the critical electric field for runaway generation during flat-top low density runaway pulses (DIII-D, TEXTOR, FTU, Alcator C-Mod), R. Granetz
- net runaway electron generation above about $E/E_c \approx 5$

Runaway electron mitigation: Densification

Diffusion coefficients and approximate ITER requirements

Mitigation Issues: Impact of injection location

What is the impact of

- poloidal and toroidal injection position / distribution
- gap between plasma and first wall
- distance to q=2 or x-point
- multiple injection

on timescales, radiation loads, mixing efficiency and mitigation efficiency?

DINA: DW VDE $(t=t_{TO})$ (extreme case of very late injection, $\Delta Z > 0.2$ m can trigger already trigger the DMS)

