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Dynamics of stochastic collapse (1) 

•! Two islands couple and exchange 
momentum through linear processes: 
–! cos2 form of the 2/1 island separatrix produces 

a 4/2 ‘harmonic’ fluctuation 
–! toroidicity induces m±1 sidebands and linear 

JxB interaction with a 3/2 island chain 
–! mutual inductive currents damp the rotation of 

the magnetic islands 
–! viscous torques damp differential flow 

between the plasma surfaces 
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Dynamics of stochastic collapse (2) 

•! Nonlinear mixing of the plasma responses to 
each NTM produces a 3rd wave, 3= 1+ 2 

•! This 3rd wave might be resonant with an 
otherwise stable mode at a 3rd rational 
surface 
–! i.e., rotation at the 4/3 surface is also damped, 

4/3 helical currents resonate with < 3, k3> 

•! Islands destabilized by penetration of the 3-
wave product experience a nonlinear torque 
associated with 3-wave mixing  
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Dynamics of stochastic collapse (3) 

•! EM torques overcome momentum of the 
system and the viscous forces transferring 
that momentum to modes 
–! higher order surfaces are destabilized 
–! a cascade of tearing instabilities 
–! island overlap and stochastic collapse 

•! If this model is valid, it suggests that by 
preventing phase-locking, one avoids 
thermal quench and prevents disruption 
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Principle of disruption mitigation by prevention 
of NTM phase-locking 

•! Phase-locking dynamics often include an 
evolution of mode structure (kpoloidal) 
–! localization of the island (current profile) 
–! structure of the plasma response (pitch-

resonant vs. kink-like spectra) 

•! If either of these processes has a sufficient 
energetic barrier, phase-locking cannot 
proceed and flow shear is maintained 
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Phase-locking: an energetically favorable 
alignment of propagating phase fronts 

•! In general, it is an agreement in phase velocity  
•! In tokamaks, it is the synchronous rotation of internal magnetic 

islands as they traverse the outboard midplane 

•! Phase-locking exacerbates the impact of NTMs 
–! flattens rotation across multiple rational surfaces 
–! contributes to a further degradation of confinement 
–! makes the core more susceptible to external perturbation 

•! Inter-NTM torques may be manipulated to hold up flow shear 
–! some NTMs simply cannot phase-lock 
–! forces that otherwise cause phase-locking accelerate the 

edge plasma and invert the rotation profile 
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Viewing geometry of ECE-Imaging 
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Simplified model of the n=1 mode, as seen from the 
outboard midplane  
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Overlay a second mode, same pitch, i.e. 
having harmonic wavenumber, k2 = 2k1 
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Doppler shift due to differential rotation (faster n=2) 
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Toroidal ion fluid rotation adjusts so as to 
re-establish phase-locking 
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n = 1,2, 3, compose a set of harmonic modes 
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! 3 =!1 +! 2 = 3!1

k3 = k1 + k2 = 3k1
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Internal measurements are necessary to identify 
phase-locking and/or 3-wave coupling 

k, k ', k ! k '

! ,! ',! "! '

m,m ',m ! m '

m n = 3 2, 2 1, 4 3

n,n ',n ! n '

Simply the laboratory frame mode 
frequency, as measured by any diagnostic 

Should be evaluated in both toroidal 
and poloidal dimensions 

A good metric—toroidal mode is a good 
quantum number 

Need a local quantity. 

Example: modes that are observed to 
phase-lock in 155570 (and similar) 

m ' m

3-wave selection criteria 
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Synchronous toroidal phase propagation: 
coalescence of the 3/2 and 4/2 fluctuations 

Begs, ‘do phases propagate in sync poloidally?’ 

3/2 

3/2+2/1 

Mirnov coil spectrum 155570 

4/2 

2/1 
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Dynamics of phase-locking are studied in 
non-disruptive discharges 

•! ‘Hybrid’ scenario attempted 
–! early 3/2 mode a key element 

•! Onset of 2/1 mode spoils the scenario 
–! islands saturate in amplitude 

•! A region of the rotation profile flattens 
–! islands rotate together, further degrading confinement 

•! But, discharge does not disrupt 
–! ‘bulk’ rotation stays elevated 
–! locking to external fields does not occur 
–! an opportunity to probe the underlying mechanisms as 

they take hold over a localized region, without the threat 
of a global collapse in confinement 
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2D imaging data provides a local, 2D power 
spectral density, S(!,kpol), at each radius 

K j !( ) = " j !( ) #x

! j "( ) = arg # j$ x1,"( )# j x2 ,"( )%& '(

M linearly independent time 
records X N(N-1) channel pairs, 
each contributing a two-point 
measurement, j: 

M*N(N-1) ~3800 measurements, 
binned to divisions in 
wavenumber (kpol 0.4-150 m-1) 
and frequency (0-400 kHz) 
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Internal, local measurements reveal 
synchronous poloidal phase propagation 

poloidal wavenumber 
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mutual torque 
flattens rotation 
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In this regime, changes in MHD frequency reflect 
changes in fluid rotation 

•! Observed velocities 
agree with CER and 
TRANSP fitting 

•! Toroidal rotation adjusts 
‘spontaneously’ 
–! no identifiable ‘trigger’ 
–! NBI power (and torque) 

held constant 

! = kpol vDoppler"# $% +! 0 + & ! ,k( )
vDoppler ! vpol "# vtor

Toroidal 
(CER) 

Poloidal 
(TRANSP) 

ECE-Imaging 
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Reduction in N (and neutrons) at phase-locking 

•! Confinement is 
degraded as a 
consequence of 
phase-locking 

•! Neutron rates also 
fall (thermal plasma 
effect) 

phase-lock phase slip 

155570 (EFIT01) 
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Once phase-locked, modes behave 
dynamically as a single structure 

155570 Mirnov 
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How does one prevent phase-locking? 

•! Forces between islands (irrespective of n-number) 
act to reduce/eliminate flow shear 

•! These forces are significant enough to impact 
discharge dynamics (and control schemes) 
–! rotation profile prediction/control 
–! orderly shutdown/disruption avoidance 
–! shot recovery/island suppression 

•! Poloidal and toroidal phase-locking torques may be 
made to counter each other, with toroidal EM and 
viscous torques in the same sense 
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Destabilize two modes which, by design, have 
different pitch of phase: 
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Again, the rotation profile at the onset of the 
modes exacerbates phase slip 
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Changes in rotation act to align phase fronts, 
but at the expense of frequency matching 
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After rotation profile inversion, momentum diffusion 
opposes the alignment of phase fronts 
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Shot 155587: Phase-locking does not occur 

•! Mode pitch makes phase-locking impossible 
•! Viscous forces separate both phase velocities 

n lines per toroidal harmonic, n = 3, 2, 1  
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Without phase-locking, the discharge takes on 
a very different character 

•! Modes are larger, and 
nearer the edge 

•! Core rotation cut 
nearly in half 
–! 20% decrease in 

angular momentum 

•! Gradient in the region 
between the modes is 
reversed 
–! shearing rate held up by 

differential torques 
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Bicoherence reflects sustained quadratic 
nonlinearities (nonlinear mixing products) 

b2 = lim
T!"

1
T

B #1,# 2( ) 2
P #1( )P # 2( )P #1 +# 2( )

P
n=3
! = P 3"1( ) + P "1 +" 2( )...

B !1,! 2( ) = lim
T"#

1
T
E X !1( )X ! 2( )X$ !1 +! 2( )%& '(

kpol ,3 = kpol ,1 + kpol ,2

Nonlinear coupling leads to 
coherent mixing 

distribution of harmonics reflects 
the mixer response function  

midplane Mirnov array 
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Differential rotation lessens the impact of the 
modes on thermonuclear performance 

•! Larger modes: 
–! Increase from 10 to 25 

Gauss at the wall 

•! Worse confinement: 
–! H98Y2 down 20% 
–! N , 2.3 ! 2.0 
–! (lost fast particles) 

•! The same measured 
neutron rate 

–! improved thermal 
production (partly due to 
mode location) 
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Further evidence of resonant effects 

•! Rotation evolves slowly toward torque balance 
•! Confinement trends upward after profile inversion 

peaked 
rotation 

profile 
inversion 

flat #i 
trend in confinement and performance 
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Poloidal velocity: 3/2 > 2/1 
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Poloidal EM torque is 
decelerating--toroidal rotation 

profile is already inverted 
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Toloidal velocity: 3/2 < 2/1 

•! Toroidal rotation 
profile inverted 
–! 2/1 accelerated 

•! TRANSP has an 
unbiased 
approach to 
MHD—it includes 
none of it 
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A generic prescription to avoid phase-locking 
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k_poloidal (local m-number) k_toroidal (n-number) 

2/1 

Poloidal phase 
diagram 

Toroidal phase 
diagram 
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Modes initially separated by toroidal rotation 
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Electromagnetic and viscous torques are 
brought into balance near phase-lock 
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‘Mode pitch,’ a function of the current profile 
and radial location of the island 
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change in radial 
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Rotation decays toward torque balance 
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Poloidal and Toroidal torques are opposed 
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k_poloidal k_toroidal 

Poloidal EM torque 
slows the mode 

Toroidal EM torque 
accelerates the mode 

(as do viscous torques) 
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Stiffness of mode structure prevents matching 
of poloidal wavenumbers  
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•! 3/2 mode frequency drifts down 
past that of the 4/2, without 
evolving in wavenumber 
–! k3/2 ! k4/2 

•! Change in kpoloidal remains 
energetically unfavorable 
–! Localization: current profile and 

flux surface shape 
–! Response: dependence on 

other parameters (e.g. N) of 
structure in ideal MHD region 

4/3 

What determines this 
energetic barrier? 
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Concluding remarks 

•! Differential rotation, induced by the structure of the MHD, 
appears to lessen the impact of the islands 
–! impact of large, slipping = smaller, locked islands 
–! phase-locking can be avoided, if not universally prevented 

•! Questions for dedicated experiments: 
–! Can the process of phase-locking be reversed? Can islands 

be unlocked and the discharge restored? Can EM torque 
heal higher-order islands and 3-wave mixing products? 

–! Does the prevention of phase-locking delay the onset of 
thermal quench? Can a disruption be mitigated by 
interrupting the ‘tearing cascade?’ 


