Update on the ITER disruption mitigation system – physics basis and technology

M. Lehnen ITER Organization

Many thanks to P. Aleynikov (MPI Greifswald), P. de Vries, A. Loarte, R. Pitts

Disclaimer:

ITER is the Nuclear Facility INB no. 174. This presentation explores physics processes during the plasma operation of the tokamak when disruptions take place; nevertheless the nuclear operator is not constrained by the results presented here. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

 \Box Summary of mitigation requirements

□ Update on the ITER Disruption Mitigation System

□ Present Physics Basis: Mitigation of thermal loads (incl. runaways) and electro-magnetic loads

This presentation focusses on R&D for the ITER mitigation system. There are other important disruption related issues that are not mentioned here.

When do we need the DMS?

Required from early operation on (heat loads)

High current operation requires high mitigation success rate (EM loads)

High efficiency needed at high energies

Runaway generation during non-active phase depends on seed mechanism (JET-ILW: no RE generation in unmitigated disruptions)

Lehnen et al., <http://dx.doi.org/10.1016/j.jnucmat.2014.10.075>

M. Lehnen, Theory and Simulation of Disruptions Workshop, Princeton, 13-15 July 2015

Thermal load limits to divertor: E_{th} < 25MJ (inner) / 60 MJ (outer) [\[ITER_D_7GFMB6\]](https://user.iter.org/?uid=7GFMB6) Maximum E_{th} = 350 MJ (false alarm): $E_{rad}/E_{th} \geq 93\%$ Maximum disruptive $E_{th} = 280$ MJ: $E_{rad}/E_{th} \ge 91\%$

Thermal load limits to FW: $I_P < 5MA$ (initial analysis with high uncertainties) [[Lehnen et al., PSI 2014](http://dx.doi.org/10.1016/j.jnucmat.2014.10.075)]

CQ radiation requirement for 7.5 MA: $E_{rad}/E_{mag} \ge 50\%$ 15 MA: $E_{rad}/E_{ma} \geq 90\%$

Thermal Loads – Surface Erosion

- Estimated erosion depth is critical! Thermal loads will largely define the required **disruption rate and the mitigation success**.
- Improved estimates require attention to: radiation shielding, modification of power exhaust capability and dust formation (surface roughening, cracking, splashing).

EM load mitigation requirement

 I_H/I_P x TPF < 0.42 (cat II)

Halo current mitigation requirement: Δt_{CO} < 150 ms (DINA)

Eddy current limit: Δt_{CO} > 36ms/50ms (400/2600 disruptions)

Sugihara et al., IAEA 2012

Reliability and success rate (predictor / DMS)

How likely is a high halo current fraction for slow CQs in ITER?*

IDDB: mainly C-FW data Mitigation $\rightarrow f_H = TPF \times I_H/I_P < 0.42$ Database \rightarrow f_H < 0.75 Slow CQs of VDE and MD can increase probability P for $f_H>0.42$

3000 disruptions at 15MA

success rate \geq (100-0.033/P)% \geq 99.7% (P=10% ?)

**see experience with JET-ILW*

Runaway electron mitigation requirement

Maximum tolerable RE energy/current

- Previously a limit of I_{RF} < 2MA has been given for ITER [Sugihara IAEA 2012]
- Maximum tolerable I_{RE} uncertain and depends on energy spectrum
- JET damage threshold much lower ~0.3 MA [Reux, PSI 2014]

M. Lehnen, Theory and Simulation of Disruptions Workshop, Princeton, 13-15 July 2015

RE loss driven by MHD instability (JET values)

$$
\Delta t = \text{loss time}
$$
\n
$$
r_{RE} \approx 0.5 \text{ m}
$$
\n
$$
L_c \approx 50 \text{ m}
$$
\n
$$
v_{perp} = r_{RE}/\Delta t
$$
\n
$$
t_{par} = L_c/c
$$
\n
$$
\Delta r = v_{perp} t_{par} = L_c r_{RE}/c \Delta t
$$

 $\Delta r < r_L$ for about $\Delta t > 0.05 ms$

RE deposition width is determined by $r_{\scriptscriptstyle L}$ if RE loss is not extremely fast

Disruption Mitigation System

Present concept and design of the ITER DMS

Systems – Massive Gas Injection (MGI)

\circ (2)

- 1 Closing Gas Volume
- 2 Counter Torque Coil
- 3 Top Hat Flyer Plate
- 4 Main Coil
- 5 Metal Bellows
- 6 MGI Gas
	- 7 Polyimide Valve Tip
- 8 Valve Seat

Development at ORNL focused on

- Mitigation of high EM loads (eddy currents in toroidal magnetic field)
- Sealing in high radiation environment
- Flow simulations

Technique based on the Jülich valve design [G. Czymek , SOFT 2014]

M. Lyttle, SOFE conference 2015

Present concept and design of the ITER DMS

Systems – Shattered Pellet Injection (SPI)

- \Box Pellet diameters up to 24.4 mm (aiming for 34mm)
- \Box Pure D₂, D₂/Ne shell and mixtures pellets have been successfully made Pure Ne is too strong to break free at 8 K, Ar maybe possible in small percentages
- \square Pellet speeds approaching 775 m/s (pure D_2) and 375 m/s 90% Neon mixture

S. Meitner, L. Baylor, S.K. Combs, SOFE conference 2015

M. Lehnen, Theory and Simulation of Disruptions Workshop, Princeton, 13-15 July 2015

DMS design review workshop 4/5 November 2014 [\(https://user.iter.org/?uid=Q6JV83\)](https://user.iter.org/?uid=Q6JV83)

- \Box The DMS shall be placed in the port-cell of the allocated port plugs (3 upper port plugs, 1 equatorial port plug).
- R&D will focus on the design of a SPI/MGI hybrid system.
- An additional MGI system was proposed inside an upper port plug above the NBI port for the non-active phase. Risk mitigation during commissioning of avoidance, prediction and mitigation systems. Feasibility to be assessed.
- \Box The reserved in-port-plug space in the allocated port plugs will be kept in case a fall-back solution is needed.

Present concept and design of the ITER DMS

Injector Location

Upper port #02, 08 and 14

Equatorial port #08

M. Lehnen, Theory and Simulation of Disruptions Workshop, Princeton, 13-15 July 2015

© 2015, ITER Organization

ITER Disruption Mitigation System

- **Quantities (upper limits)**
- Thermal Load Mitigation: up to 4 x 2 kPam³ (Ne or Ar, mixtures with D_2) **Runaway Mitigation:** 40 (He), 50 (D₂), 100 (Ne or Ar) kPam³
- \Box Thermal & EM load mitigation: 3 x 3 barrels (UP) + 3 barrels (EP) , each pellet: < 3 kPam³ (Ne) or < 1.7 kPam³ (Ar)
- \Box Runaway mitigation/suppression: 5 x 3 barrels (EP), each pellet: < 8.3 kPam³ (Ne) or < 4.7 kPam³ (Ar)
- □ Staggered injection to reach maximum throughput required for runaway suppression**Pellet Collection Reentrant Vacuum**

Timing

Minimum response time \rightarrow *increase mitigation success rate*

Delivery time SPI (gas gun model): 25-30 ms (UPP), 15-20 ms (EPP), 3-8 kPam³ Ne pellets

- Delivery/pre-TQ time MGI (ASTRA simulations for Ne and Ar): 10-15 ms (UPP); 10% of N_{reservoir} delivered 2-3 ms (in port-plug); 20-40% of N_{reservoir} delivered
- *Each valve/pellet can be triggered individually*
- *Delay times challenging for acting on input during the* disruption (e.g. detection of runaways) \rightarrow fixed injection *sequence to be triggered by PCS (via CIS)?*
- *PCS can update injection sequence, quantities and species (depending on pre-pulse system configuration) during the pulse to adapt to mitigation requirements (0.5 ms time basis)*

Thermal Load Mitigation

**See Lehnen et al., <http://dx.doi.org/10.1016/j.jnucmat.2014.10.075> for references*

M. Lehnen, Theory and Simulation of Disruptions Workshop, Princeton, 13-15 July 2015

- factor ~4 increase in TQ radiated power over range of scan
- two outliers from broken pellets
- saturation at large quantities (similar to Ar MGI in JET)
- Consistent with observations of high radiation fractions in DIII-D with MGI using similar quantities

ASTRA simulations (1D) of the TQ $(E_{th} = 300MJ)$ Unmitigated TQ of 3 ms using $\chi_i = \chi_e = D_e = D_Z = 210 \text{ m}^2/\text{s}$

Leonov et al., EPS 2011

M. Lehnen, Theory and Simulation of Disruptions Workshop, Princeton, 13-15 July 2015

Requirements for a 90% radiation fraction (TQ)

These are indicative values that do not result from a comprehensive assessment

Ninj (experiments) > Ninj (simulation) if scaled with dE/dt

Thermal loads during CQ: similar quantities as for halo current mitigation (see EM load mitigation)

Radiation heat loads during thermal load mitigation

- □ DIII-D and JET experiments are in line with NIMROD simulations with respect to the impact of the n=1 mode on the radiation distribution
- Discrepancy: maximum radiation in JET at the o-point
- \Box TPF with external error fields: < 2.0

 \Box PPF to be assessed, initial results (DIIID, ITPA-MHD*): < 2.0

* *N. Fidietis* **Example 2001** Shallow melting of SS possible \ge 90MJ

EM Load Mitigation

All IDDB MGI data points: t_{CO} > 36ms

But: fast CQ sometimes generate RE plateaus

5% of all MGI disruptions: 36 ms $<$ t_{CO} $<$ 50 ms

To be done (before drawing conclusions):

Select by N_{ini} , current density, gas species, $\tau_{\text{VV}}/\tau_{\text{CO}}$, etc.

N. Eidietis and ITPA collaborators, Nucl. Fusion 55 (2015) 063030

M. Lehnen, Theory and Simulation of Disruptions Workshop, Princeton, 13-15 July 2015

 \Box Outliers (broken pellets) fit overall trend

Courtesy of L. Baylor (presented at ITPA MHD 2015)

DINA simulation with self-consistent power balance $(P_{rad} = P_{OH})$

EM loads: Ne preferable compared to Ar Maximum assimilated(!) Ne quantity about $\leq 3x10^{22}$

S. Konovalov et al., IAEA 2014

Requirements for EM load mitigation

quantities for halo currents not an issue:

- \triangleright DINA: CQ in the order of 100 ms for N_{ini} ~ O(10²¹) (Ne, assimilated)
- *limiting factor are eddy current loads (* $t_{CQ}/S \ge 2.3$ *ms/m²):*

Extrapolation not necessarily straightforward: impact of VV currents, vertical displacement and carbon release!

M. Lehnen, Theory and Simulation of Disruptions Workshop, Princeton, 13-15 July 2015

Runaway Mitigation Scheme

Avoid seeding Runaways

JET RE domain: high B and high Ar fraction facilitates RE generation

right species and quantities for thermal load mitigation

ITER avalanche multiplication **up to 10²¹**

How can the JET results be transferred to ITER?

Note: additional seeds from Compton scattering and tritium decay during active phase

Kinetic Simulations: Decrease of runaway current and energy depends on Ar density

P. Aleynikov et al., IAEA 2014

Instantaneous increase of n_{Ar} at t = 30 ms, avalanche spectrum

Vertical loss time of the RE beam of the order of 100 ms (stability analysis pending / critical q ?)

Mitigation by runaway energy dissipation

After CQ and RE formation

- E_0 : electric field to sustain RE population (note: E_0 > E_c)
- \cdot E_{a} : electric field to allow avalanche (energy balance!)
- Electric field adjusts itself to just sustain RE population

*stopping power for e-e collisions and Bremsstrahlung taken from: http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html

M. Lehnen, Theory and Simulation of Disruptions Workshop, Princeton, 13-15 July 2015

Consequences

[see Pavel's presentation and P.Aleynikov and B. Breizman, PRL 2015]

- **Linear current decay**
- Energy limited by synchrotron radiation 1-10 MeV, low energy / high pitch angle dominates
- Electric field to sustain the RE population is higher than E_c

V. Riccardo et al., PPCF 2010

Consequences

[see Pavel's presentation and P.Aleynikov and B. Breizman, PRL 2015]

- Linear current decay
- **Energy limited by synchrotron radiation 1-10 MeV, low energy / high pitch angle dominates**
- Electric field to sustain the RE population is higher than E_c

DIII-D shows very similar spectrum and pitch angle distribution

E. Hollmann, P. Parks et al., PoP 2015

Consequences

[see Pavel's presentation and P.Aleynikov and B. Breizman, PRL 2015]

- Linear current decay
- Energy limited by synchrotron radiation 1-10 MeV, low energy / high pitch angle dominates
- **Electric field to sustain the RE population is higher than E**_c

DIII-D shows positive growth for fields $E \gg E_c$ only*

E. Hollmann et al., NF 2013

**experimental rate based on HXR (impact of energy spectrum)*

Requirements for RE energy dissipation

- \triangleright Kinetic simulations:
	- high-Z more efficient (Ar or higher)
	- Assimilated Ar quantity > $2x10^{23}$ (V_{plasma} = $830m^3$)
	- Uncertainties: 1D and RE stability analysis required

Required high-Z quantities more than a factor 10 higher than what can be tolerated for the CQ rate

 \Rightarrow Solution: second, delayed injection

Experiments:

- I_{RF} decay observed in many devices after impurity injection, DIII-D confirmed energy dissipation for high-Z, but not yet conclusive for second injection (JET)
- Main uncertainty: interaction between neutrals and background plasma

2nd injection affects the RE in DIII-D, AUG, Tore Supra, but not in JET!

Open questions related to the ITER DMS

- How efficient is **Shattered Pellet Injection** in ITER? What is the optimum design? (e.g. shard size – penetration depth)
- How efficient is a second injection in ITER for **RE energy dissipation**?
	- Interaction background plasma / neutrals and REs
	- Impurity penetration efficiency (like a detached high density divertor?)
	- Instability limits (available time, residual E_{RF})

- How much margin is there for **thermal load mitigation**? Avoiding runaway generation, avoiding too high eddy currents. Required quantities? Radiation asymmetries?
- How much **erosion** do we expect per unmitigated disruption? Vapour shielding, thermal quench dynamics, magnetic energy dissipation.
- How likely are high **halo currents** during slow CQs in ITER?

Back-up slides

Runaway electron mitigation requirement

Magnetic energy conversion

Self-consistent resistive time for Ar injection (upper t_{CO} limit)

Single loss event at 100 ms (vertical displacement time)

- What happens if equilibrium evolution is taken into account? $t_v < \Delta t_{\text{conversion}}$
- **Repetitive fast events can cause high** conversion rate – RE beam stability?
- What are the characteristics of the instability? Timescale, deposition…

Mitigation by runaway energy dissipation

SPI: open questions

How efficient is **Shattered Pellet Injection** in ITER? How do

mitigation scenarios have to be designed?

Initial results from DIII-D are promising, but many open questions:

- Thermal load mitigation efficiency, radiation asymmetries?
- Efficiency of multiple injection, staggered injection?
- RE energy dissipation?
- How to scale SPI parameters (e.g. shard sizes, speed) to ITER?
- Impact of plasma parameters on efficiency (e.g. penetration depth)?
- What is the impact of the ITER specific injection geometry?
- Quantitative comparison to MGI needed

