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US/EU Statistical Disruption Studies on JET [Joint European Torus] 
 
 

 
Situation Analysis: 
      –  Most critical problem for MFE:  avoid/mitigate large-scale major disruptions   
•  Approach:  Use of  big-data-driven statistical/machine-learning predictions for the 

occurrence of disruptions in JET 
•  Current Status:  ~ 6 years of R&D results (led by JET) using SVM-based ML on 

zero-D time trace data executed on modern clusters yielding ~ reported success 
rates ranging from 80 up to 95% for JET, BUT > 98% with false alarm rate < 2.5% 
actually needed for ITER (Reference – P. DeVries, et al., June 2015)  

•  PPPL Team Goals include:  
(i)  improve physics fidelity via development of new ML multi-D, time-dependent 

software including better classifiers;   
(ii)  develop “portable” predictive software beyond JET to other devices and 

eventually ITER;  and  
(iii)  enhance execution speed of disruption analysis for very large datasets  
        via deployment on HPC leadership facilities  
NOTE:   à EUROfusion JET leadership has formally agreed to provide PPPL/PU with 
collaborative access to its huge disruption-relevant  multi-dimensional data base that 
has yet to be analyzed. 

 	
  



CLASSIFICATION 
•  Disruption Prediction is a “Binary Classification Problem:  

–  Disruptive or Non-Disruptive  
 

•  Machine learning techniques for classification are Supervised 
–  Our approach as physics domain scientists is to combine the 

considerable knowledge base of observationally validated 
information with advanced statistical predictive methods such as 
Machine Learning (ML)  

  è  Approach:   examine relevant data base 
–  Use training set to generate a model 
–  Use trained model to classify new samples 
–  Targeted multi-dimensional data analysis will require new signal 

representations other than current mean and std [standard deviation 
of positive FFT spectrum (excluding first component)] 



Selecting Data From the Signals 
Example*:  Plasma Current 

 
Non-Disruptive Signal: 
 
Selecting non-disruptive points 
from the steady-state zone 

Disruptive Signal: 
 
Selecting disruptive points 64, 
128, and 256 ms before 
disruption 
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Ref.à  S. Talabzadeh, et al. IAEA Tech. Mtg. on Fusion Data 
Processing, Validation, & Analysis, June 1-3, ‘15, Nice, France 
 
	
  



Feature Extraction Process 
•  Reduce data set to form “feature vectors” {xi, yi} 
•  Consider combination of signals to describe plasma: 
 
              with 

{disruptive, non-disruptive state} d = 14 
7 signals* x 2 representations+ 

*Signals: 
(1) Plasma current [A] 
(2) Mode lock amplitude [T] 
(3) Plasma density [m-3] 
(4) Radiated power [W] 
(5) Total input power [W]  
(6) d/dt Stored Diamagnetic Energy [W] 
(7) Plasma Internal Inductance 
	
  

+Representations (set of 32 samples at 1 kHz): 
(1)  Mean 
(2)  Standard deviation of positive FFT spectrum 

 (excluding first component) 

*Each signal normalized to [0,1] 
over entire data set 



SVM Picture 
Decision Function f(x) as hyperplane with a normal w and displacement 

b to separate disruptive & non-disruptive points in the feature space  
 

TASK:  find hyperplane separating “disruptive” and “non-disruptive”  
states with widest possible margin  

Support Vectors 
form boundary 

BUT, real data is NOT linearly separable ! 
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SVM Picture (continued) 

       è    K(x) represents function needed to map data to a higher 
          dimensional space where it can actually be separated 

Reference #2:   G.A. Rattá et al. Nuclear 
Fusion, 50 (2010) 
	
  



SVM Decision Function 

After solving the optimization problem, classify new data using: 
	
  	
  

Assess accuracy in terms of: 
 • Correct predictions 
 • Missed alarms 
 • False alarms 

Lagrange Multipliers 
Support Vectors 
	
  

Kernel Function 
 (e.g., Radial Basis Function/Gaussian) 
	
  



Multi-tiered SVM  
(separate SVM models trained for separate consecutive time intervals 

preceding disruption) 
(applied to APODIS Code developed by J. Vega, et al.) 

Incoming real-time data 

1st Tier: Three models trained separately on sequential data with RBF 
(Gaussian) kernel    (Note:  up to 8 models were considered) 
2nd Tier: Trained with linear kernel on combined Tier 1 outputs 
Reference:  J. Vega et al. Fusion Engineering and Design, 88 (2013)  
[APODIS à “Advanced Predictor of Disruptions”] 
	
  



ML SVM Workflow 

Train Model 
with filters for 
missing/bad 

signals 

Use Model 
for 

Prediction 
e.g., R. Moreno, 

et al. IAEA 
Tech. Mtg., 

Nice, France 
June ‘15 

Moving forward, PPPL team will focus on multi-dimensional (instead of 
present zero-D time trace) signals 

e.g. radial temperature profile 
Many interesting possibilities for  

more efficient, physics-motivated choices of classifiers 

Feature 
Extraction 

Zero-D Signals: 
mean & std 

(FFT) 

Choose Classifiers 
e.g. (14) 

Genetic Alg. used on 13 
signals – reduce to 7 signals 

w/ 2 representations 
à 14 Classifiers 

 



 
ML Predictive Challenges & Opportunities  

•  CHALLENGE:  SVM results at JET currently delivers in range of 80% to 
95% accuracy, but need to consistently achieve > 98% for reliable ITER 
operation  

•  PPPL FOCUS:  Improve predictive performance by enhancing physics 
fidelity following “Supervised ML Theme” 
è Function of time + spatial dimensions, including profile/gradient 

information 
-- Serve as inputs for regression-type formulation of stability 
thresholds for improving physics-based classifiers 
-- Investigation of parametric scaling trends 

–  Explore multi-dimensional signals with associated introduction of much 
larger/more complex database 

–  Explore inclusion of threshold conditions for key disruption precursors 
(currently NOT included in SVM classifiers) such as Neoclassical 
Tearing Modes (NTM) 



ML Predictive Challenges & Opportunities 
 
•  Portability Challenge for ML Predictive Software (beyond JET): 

–  First investigate applicability to NSTX/NSTX-U disruption database, and then move 
on to others (DIII-D, ASDEX, EAST, KSTAR, …..) à ultimately leading to ITER 

•  Alternative Methods to SVM: 
–  Deterministic Annealing (collaboratively with J. Choi of ORNL) 
à Can be used in parallel with SVM or used to improve choice of classifiers as part of 

SVM workflow 
•  “Deep Learning” Algorithms  
       àFor feature selection approaches with broader scope than current Genetic Algorithms   
•  Broader Applicability of ML Methods (developed for disruption predictions)  

à e.g., apply to predictions of other important “binary” type fusion physics phenomena 
such as “L to H” transitions 

•  Deployment of more advanced ML software engaging very large dataset 
investigations on HPC leadership hardware 



Disruption Data Subset  

#	
  Shots	
   Disrup've	
   Nondisrup've	
   Totals	
  

Carbon	
  Wall	
   324	
   4029	
   4353	
  

Beryllium	
  Wall	
   185	
   1036	
   1221	
  

Totals	
   509	
   5065	
   5574	
  

Sample	
  Signals	
  (0-­‐D	
  'me	
  trace)	
   Data	
  Size	
  (GB)	
  

Plasma	
  Current	
   1.8	
  

Mode	
  Lock	
  Amplitude	
   1.8	
  

Plasma	
  Density	
   7.8	
  

Radiated	
  Power	
   30.0	
  

Total	
  Input	
  Power	
   3.0	
  

d/dt	
  Stored	
  Diamagne7c	
  Energy	
   2.9	
  

Plasma	
  Internal	
  Inductance	
   3.0	
  

JET produces ~  
Terabyte (TB) of   

data per day 

  
~55 GB data 

collected from 
each JET shot 

 
è Well over 35 TB total 

amount with multi-
dimensional data yet to 

be analyzed 



JET 
Disruption 
Shot 
#82499 
 
 ~ 1 second 
before 
thermal 
quench 
 
 
Visible light 
from colder 
plasma in 
divertor/
wall regions 
 
 
 
 
 



Preliminary Work at PPPL 

•  Gained access to JET database (MDSplus) 
 
•  Extracted signal & video 

•  Acquired and implemented SVM framework from APODIS 
 
•  Rewrote development framework to be self-contained within 

Matlab 2014, resulting in: 
 

-- 100x speedup over using LIBSVM by avoiding excessive I/O 
-- Simple training / testing reduced from 85 min to < 1 min 



Multi-tiered SVM Training 

0 -30 

Times given as t - td in milliseconds 

-62 -94 -126 

M1 M2 M3 

-1000 -1032 -1064 -1096 

M1 M2 M3 

   Disruptive Samples Nondisruptive Samples 



RECENT RESULTS for JET ILW Disruption Data:  Comparison of 
Results from PPPL ML-SVM  Analysis with APODIS  

30 ms before disruption (Ref.-- P. DeVries – ITER disruption prediction 
requirements à mitigation trigger time > 30 ms) 
APODIS predicted rate of 87.5% while PPPL ML-SVM gives 89.8%  

• APODIS trained on 738 disruptive and 2,035,000 non-disruptive samples 
 
• PPPL’s version of ML-SVM trained on 975 disruptive and 975 non-disruptive samples   

PPPL ML-SVM 

j	
  



DA (Deterministic 
Annealing) Method 
 
Jong Choi, ORNL 
 
 Generative Topographic 
Mapping (GTP) using 
Deterministic Annealing (DA) 
 
References: 
• J. Y. Choi, et al. Science 
Direct, Proc. Computer 
Science 00, 1-10 (2010) 
 
• Geoffrey Fox, et al., 
Parallel Processing Letters, 
May 17, 2013. 
  
 
	
  
	
  

Projecting 14D space (7 signals x 2) into 3D space 
to develop SVM Classifers à movie shows 
separability of Disruptive from Non-Disruptive Data: 
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• Fusion Energy Mission Relevance:   

 -- Goal of Magnetic Fusion Energy goal is demonstrating the scientific & technical 
 feasiblity of delivering Fusion Power  

       -- Most critical associated problem is to avoid/mitigate large-scale major disruptions  
 
• Relevance to HPC:   

 -- New focus on development of large-data-driven “machine-learning” statistical 
methods as alternative/complement for conventional “hypothesis-driven/first principles” 
predictive methods      
 
• Associated Challenge: 
 

  à  Significant improvements over zero-D SVM-based machine-learning 
capabilities to achieve  >98% success rate with portability of software to ITER 
via enhanced physics fidelity (capturing multi-D) and execution time (moving 
beyond clusters to Leadership Class Facilities. 
 
 

Summary   
    


