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Outline 

•  Summary of numerical modelling
–  Non-monotonic RE distribution function

•  Historical background & RE Fokker-Planck Equation 
•  New Kinetic Theory for RE in a near threshold electric field

–  Analytical Solution of the Fokker-Planck Equation
–  Physics details of the theory

§  Non-monotonic distribution function
§  Sustainment electric field
§  Avalanche onset electric field
§  New avalanche growth rate
§  Hysteresis

•  Mitigation/current decay regime
•  Summary
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Bounce averaged Fokker-Planck + current channel modeling (0D & 1D)*
•  Kinetic model:

•  Current channel modeling:

–  0D chain equation                        and radiation balance 
–  GTS. 1D current diffusion, heat diffusion, densities diffusion equations

Non-simplified 
(conservative) knock-on 

source (significantly 
affects avalanche rate)

Synchrotron and 
bremsstrahlung 

(enhanced scattering 
and radiation limits the 

RE energy)  

Scattering and friction 
accounts for an 

interaction with not 
fully ionized impurities 

(significantly higher 
scattering on High-Z 

impurities)
ZAr(1.6eV, 5 MeV)~12

Numerical calculations 

dt
dILRE −=π2

* [P. Aleynikov, K. Aleynikova, B. Breizman, G. Huijsmans, S. Konovalov, S. Putvinski, and V. Zhogolev, 
25th IAEA Fusion Energy Conference, St. Petersburg, Russian Federation, 2014, pp. TH/P3–38.]

 Prad T( )= PΩ T( )
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Mitigation in ITER 
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Mitigation of the RE current and energy with different Ar MGI.  

•  Start from a given value of RE seed current (≈ 70kA) after the TQ
•  Ar density required for TQ mitigation is ≈ 1019m−3

•  Red curves – not mitigated RE decay
•  Green and Blue– Ar density is introduced at 30ms
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RE distribution function 
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RE 2D distribution function at t=30ms and t=100ms. nAr = 3·1020m−3

•  Exponential distribution function during/
after avalanche (agrees with [RP])

•  Fast energy drop after MGI
•  Plateau on the average energy evolution

•  Peculiar distribution during the plateau

•  High E ~ 2Ec during the decay

Ar
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Solutions of RE kinetic equation 
•  The effect was identified in 1925 by Charles Wilson (inventor of the cloud chamber)
       [C.T.R. Wilson, Proc. Cambridge Philos. Soc. 42, (1925) 534]
  
•  Early experimental observation in tokamaks in 50th and 60th and later studied in 
       [Bobrovski 1970, Vlasenkov 1973, TFR group 1973, Alikaev 1975]

•  The first analysis of runaway phenomena has been carried our by Harry Dreicer 
       [Proceedings of 2nd Geneva conf 1958, 31, 57; Phys Rev., 1959, 115, 238]

•  Frequently cited theory has been derived by Alexander Gurevich 
       [JETF 1960, 39, p1296]
 
•   Relativistic case by Jack Connor and Jim Hastie
      [J. W. Connor, R. J. Hastie, Nucl. Fusion 15, 415 (1975)]

•  Discovery of the avalanche phenomena by Yuri Sokolov
       [Yu. A. Sokolov, JETP Lett., 29, No. 4 (1979)]

•  Marshall Rosenbluth, Sergei Putvinski “Theory for avalanche of runaway electrons in tokamaks” 
      [M.N. Rosenbluth, S.V. Putvinski, Nucl. Fusion 37, 1355, 1997] 

•   Studies with “Rosenbluth-Putvinski” avalanche source and synchrotron  
       [Martin-Solis (1998); Andersson, Helander and Eriksson, (2001-…); Stahl et al., PRL (2015)]
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Kinetic equation 
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Kinetic equation in Rosenbluth-Putvinski 
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                           Synchrotron radiation reaction:

R̂F = 0

Time scales: 

τ rad ≡
3m3c5

2e4B2

The equation in this form is solved analytically in [M. N. Rosenbluth, S. V. Putvinski, Nucl. 
Fusion 37, 1355 (1997)]

However this source appropriate well above the avalanche threshold, but needs to be 
generalized in the near-threshold regime.

 τ ≡ m2c3

4πnee
4 lnΛ

   

Large-angle collisions (Möller source):ŜF
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Kinetic equation 
Time scales: 

τ rad ≡
3m3c5

2e4B2

1) Möller (avalanche) source (    ) is weaker than electron drag by Coulomb logarithm.
2) The small parameter is                     , i.e. electric file is close to the threshold.
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The separation of timescales between small-angle collisions and knock-on 
collisions suggests a two-step approach to the problems of runaway production:

1)  Ignore the large-angle collisions and study the behavior of pre-existing 
runaways

2)  Use the distribution function of the accumulated runaways to predict their 
production and loss

Dimensionless kinetic equation:

Solution of the Fokker-Planck equation 
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[P. Aleynikov, B. Breizman, Theory of Two Threshold Fields for Relativistic Runaway Electrons, 
Phys. Rev. Lett., 114, 155001 (2015)]
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In the near-threshold case the time-scale for pitch-angle equilibration is much 
shorter than the momentum evolution time-scale. 

Thus, the lowest order kinetic equation is:

              solution:

Integration of the exact kinetic equation over all pitch-angles eliminates the lowest 
order terms and gives a one-dimensional continuity equation for the momentum 
flow:

Fast pitch-angle equilibration 
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The flow velocity 
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The roots pmin and pmax merge at a certain electric field E=E0.  
This is the minimal electric field required for RE sustainment.

Peaking of the distribution 
function around pmax 

U(p) ≡ Ε cosθav −1−
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The sustainment threshold field is always higher than Connor’s Ec field. 

           Contours of the sustainment threshold field (solid)

The sustainment threshold field 
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1)  All primaries are at pmax with
2)  Both electrons have p>pmin after the collision
3)  Energy conservation requires
4)  The cross-section for such collisions gives the growth rate

5)  The integral is evaluated analytically for the Möller cross-section:

Avalanche growth rate 
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Avalanche onset field 
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The avalanche onset condition:

The avalanche onset field Ea is greater than the runaways sustainment field E0
         Contours of the avalanche onset field (dashed)
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Rosenbluth-Putvinski theory
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Hysteresis 

Ea

E0

Growing inductive field Decaying inductive field

No runaways

Attractor holds seed 
electrons

Runaway avalanche

Rapid decay of fast electron 
current

Attractor holds residual
fast electrons

Runaway avalanche 
stops at  E = Ea

Attractor disappears 
at  E = E0

Phase space attractor 
forms at  E = E0
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Mitigation regime 
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•  The avalanche is switched-off
•  The field stays between Ea and E0 
•  The runaways remain peaked at pmax
•  The runaway density and current 

decrease in step with the dissipation of 
the magnetic energy
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Current decay time-scale 
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1)                   - function only of plasma parameters 

2)  The total energy loss is    

3)   The current decay is linear and the decay rate is given by

4)  This estimate is insensitive to the distribution function
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Reduced RE kinetic model for fluid-like codes 

E, n, Z, B

Distribution function 
(pmin, pmax) 

Avalanche “Resistivity”

 

∂ jre
∂t E=const  

∂ jre
∂E

Current equation RE energy



TSD Workshop 2015, PPPL        July 14 2015 
 

Page 21 

Reduced RE kinetic model for fluid-like codes 
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Summary 
1)  Rigorous kinetic theory for relativistic RE in 

the near-threshold regime 
 
2)  The electric field for runaway avalanche 

onset is higher and the avalanche growth 
rate is lower than previous predictions 

3)  The new theory predicts peaking of the 
runaway distribution function near pmax 

4)  Existence of two different threshold fields 
produces a hysteresis in the runaway 
evolution 

5)  Particular features of this regime allows for 
evaluation of the current decay rate  
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Benchmark against numerical solution 
•  Numerical solution exhibits peaked distribution function 
•  Launching two groups of electrons from p>pmax and pmin<p<pmax 

p p
cos θ cos θ 



TSD Workshop 2015, PPPL        July 14 2015 
 

Page 24 

 2

 4

 6

 8

 10

 12

 14

 20  40  60  80  100  120  140  160  180  200

St
ab

le
 p

oi
nt

 p
m

ax
=p

m
in

τrad/τ

Z=1
Z=5

Z=10



TSD Workshop 2015, PPPL        July 14 2015 
 

Page 25 

Questions 

 Calculations          Rosenbluth & Putvinski

•  Not monotonic distribution 

•  Linear RE current decay

•  Plateau on the average energy evolution
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