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the successful avoidance of disruption events is extremely

relevant for fusion devices and in particular for ITER

- the problem complexity has motivated the recent efforts for
development of data-driven predictors and Machine Learning studies
to successfully predict disruption events with sufficient warning time

« SQL databases created, gathering time series of relevant plasma
parameters: tables available on DIII-D, EAST and C-Mod (cross-device
analysis)

— more than 40 available parameters, ~500k samples per parameter

— both disrupted and non-disrupted discharges, focus on 2015
campaigns for now

- exploratory studies to gain insights on the DIII-D dataset before
addressing the problem of a disruption-warning algorithm

— binary and multi-class classification analysis through Machine
Learning algorithms

— variable importance ranking
— accuracy metrics and comparison between different applications
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we chose a subset of features and samples for ML

applications to the DIlI-D database for disruption prediction

10 features out of ~40 available parameters li Ip_error_fraction | Vloop
q95 | radiated_fraction | nTamp

mainly dimensionless or beta_p dWmhd_dt

machine-independent parameters n/nG Te HWHM

focus on flattop disruptions: 195 flattop disruptions complemented by an
analogous number of discharges that did not disrupt, possibly extracted
from the same experiments (similar operational space) = 392 discharges

~70,000 samples for each of the 10 chosen input variables

reliable knowledge base capable of highlighting the underlying physics :
— validated signals and EFIT reconstructions
— avoided intentional disruptions

— avoided hardware-related disruptions by specifically checking for
feedback control on plasma current or UFOs events
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a plethora of ML algorithms is available in literature -

already tested on other devices for disruption prediction

* ML supervised and unsupervised algorithms, mainly developed at JET
and also studied in real-time environment, “black box” approach:

— Artificial Neural Networks[1-2], multi-tiered Support Vector Machines[3],
Manifolds and Generative Topographic Maps[4]

[1] G. Pautasso et al. Nuclear Fusion 42 (2002) 100-108

[2] B. Cannas et al. Nuclear Fusion 44 (2004) 68-76

[3] J. Vega et al. Fusion Engineering and Design 88 (2013)
[4] B. Cannas et al. Nuclear Fusion 57 (2013) 093023

« o better understand the dataset: “white box” approach
— inner components and logic are available for inspection
— importance of individual features can be determined

« Random Forests[5]: a large collection of randomized de-correlated
decision trees that can be used 1o solve both classification and
regression problems

[5] L. Breiman, “Random Forests”, Machine Learning, 45(1), 5-32, 2001
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decision frees are hierarchical data structures implementing

the divide-and-conquer sirategy: 2D classification example

« CART (Classification and Regression Trees) algorithms repeatedly
partition the input space, implementing a test function at each split
(node), to build a tfree whose nodes are as pure as possible

« 2 features (x;, X,) and 2 classes (red, blue)
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recursive binary trees have a key feature: interpretability, but

they tend to overfit - pruning needed

« decision trees have advantages and limitations, as well as other ML
algorithms - Random Forests seems a promising algorithm

for classification purposes: m-mm

no overfitting

intrinsic feature selection and
robustness to outliers

parameter tuning

non-parametric models
(no a-priori assumptions)

interpretability

natural handling of mixed type
data

prediction accuracy ®
fime handling ® ®

-
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Random Forests is an ensemble method, leveraging

bootstrapping and averaging techniques (bagging)

main steps of the algorithm:

« grow many frees (e.g., 500 trees) on bootstrap samples of the original
training set

— random sampling with replacement from the training set

» frees are fully grown - minimize bias (no pruning needed)

* reduce variance of noisy but unbiased (fully grown) trees by
averaging (regression) or majority voting (classification) for the final
decisions on test samples

» very fast, highly parallelized algorithm
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binary classification problem:

labeling a time slice as disrupted/non-disrupted

li Ip_error_fraction | Vioop
(X;, X,)—| 995 |radiated_fraction | nlamp
No  branches beta_p dWmhd_dt
n/nG Te_ HWHM

decision node

leaf

decision node

from a 2D space with
few points to a 10D
space with many

R, R; "\ fhousands of points

N\

branches Yes

leaf leaf
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binary classification problem: disrupted/non-disrupted

graphical depiction of a single tfree in a Random Forests

li Ip_error_fraction | Vioop
decision node
(X, X,)—| q95 |radiated_fraction | nlamp

No  branches beta_p dWmhd_dt
n/nG Te_ HWHM

leaf

decision node

from a 2D space with
few points to a 10D 10 variables
leaf el | space with many ~ 70,000 time slices

R, R; \ thousands of points 394 discharges
\ 195 flattop disruptions
500 decision trees

branches Yes
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binary classification problem: disrupted/non-disrupted

no time dependency - 10D feature vectors

original dataset 500 trees built on
split in training — — =»| fraining data 1o
and test subsets define a set of rules

P e

features are not scaled
Q-priori;

at each node, random
sub-selection of
features;

impurity minimization by
choosing ’rhe best split; 7

- s e s e = - _— O m—— - - - -

(set of rules is used fo )
decide if new, unseen
samples in our test set,

belong to one of the
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confusion matrix is used as an accuracy metrics to assess the

model’s capability to discriminate between class labels

binary classification -
no time dependency -
15ms black window
before disruption event

!

non-disrupted disrupted
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confusion matrix is used as an accuracy metrics to assess the

model’s capability to discriminate between class labels

binary classification - succes.sfully
no time dependency - predicted
15ms black window non-disrupted _Confusion matrix_
before disruption event samples
1 non-disrupted} ;I' 19230 320964° e -
non-disrupted  disrupted _ ' '
2
[
S
=
disrupted |- 25% 41 1 %
2.68% 42.86%
class accuracy:
+ disrupted 94.1% (TPR) | .
- non-disrupted 94.4% (TNR) , & &
missed X ¥ successfully
. & & .
overall accuracy: ~94.3% detections & prgdlcted
(false € bred disrupted
redicted label

=D negatives) samples
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relative importance ranking can be extracted from the

Random Forests — ‘white box’ approach

« relative variable importance wrt label predictability is defined as
mean decrease impurity and can give indications on the underlying
physics

« g%5is the relatively most important variable

— probability distributions for disrupted and non-disrupted samples show
different behaviors

blue: non-disrupted discharges - flattop only
red: disruptions during flattop
- 0.2
Te_HWHM £
8 0.15¢
ip_error_frac s
o
0.1
dWmhd_dt 0.05 f
prad_frac 0 =11 . —
1 2 3 4 5 6 7 8 9
niamp 995
‘ ‘ ‘ ‘ |
0.00 0.06 0.12 0.18 0.24 0.30 16/20

Relative Importance



binary classification - train/test split on the basis of the whole

discharges and not the individual samples

« information pertaining to the
same discharges should not be
shared with the training set: Confusion matrix

how can we assess the model’s | |
generalization capabilities? 4540 661
« reliable test set, capable of  non-disruptedf 46.75% 6.81%
correctly highlighting the ' ]
model’s predictive power §
E
=
class accuracy: disrupted| 309 4201
. disrupfed 93.1% 3.18% 43.26%
« non-disrupted 87.3%
overall accuracy: ~90% & &
K X
&% S
&

Predicted label
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in the multi-class classification, the time dependency is

infroduced through the definition of different class labels

multi-class classification

T

non-disrupted : time slices for
non disruptive shots

— far from disr :

time_until_disrupt > 0.35s

— close to disr :

| time_until_disrupt < 0.35s
|

class accuracy:

* non-disrupted 88.6%
« far from disr 84.4%
» close to disr 86.6%

overall accuracy: ~87%
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True label

Confusion matrix
I

non-disrupted

4607

far from disr

close to disr|-
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| 326 2594 152
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in the multi-class classification, the time dependency is

infroduced through the definition of different class labels

multi-class classification

non-disrupted : time slices for
non disruptive shots

T

— far from disr :
time_until_disrupt > 0.35s

——— close to disr :
| time_until_disrupt < 0.35s

-———p

class accuracy:

* non-disrupted 88.6%
e far from disr 84.4%
« close to disr 86.6%
overall accuracy: ~87%

True label

non-disrupted

Confusion matrix
I

far from disr

close to disr|-

grouping non-disrupted and far from disr
classes, thus defining two new classes:
stable and disruptive (phases), gives an

overall accuracy ~96%

4607 579 15
47.44%  5.96% | 0.15%
| 326 2594 152
3.36% | 26.71% | 1.57%
71 121 1246
0.73% | 1.25% | 12.83%
| 6 | . | ‘
&"Q\e °<°6<} \o&é
«6‘9 ‘&*&‘ \090
® ©

Predicted label
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conclusions and future work

* ML classification gives promising results, with optimal performances
(Random Forests) and possibility of gaining insights on the dataset

« address the disruption-proximity problem: “how much time until the
discharge is going to disrupt” - possibly evaluating different algorithms
that could best perform in case of regression problems

 real-time integration with the PCS

« dimensionless and machine-independent features enable cross-
device analysis: comparison with EAST and C-Mod data and possible
extrapolation to ITER
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