Exploratory Machine Learning studies for disruption prediction on DIII-D

by

C. Rea, R.S. Granetz MIT Plasma Science and Fusion Center, Cambridge, MA, USA

Presented at the

2017 Theory and Simulation of Disruptions Workshop

PPPL Princeton, NJ, USA July 17th – 19th , 2017

C. Rea / TSDW / July 2017

the successful avoidance of disruption events is extremely relevant for fusion devices and in particular for ITER

- the problem complexity has motivated the recent efforts for development of data-driven predictors and Machine Learning studies to successfully predict disruption events with sufficient warning time
- SQL databases created, gathering time series of relevant plasma parameters: tables available on DIII-D, EAST and C-Mod (cross-device analysis)
 - more than 40 available parameters, ~500k samples per parameter
 - both disrupted and non-disrupted discharges, focus on 2015 campaigns for now
- **exploratory studies** to gain insights on the DIII-D dataset before addressing the problem of a disruption-warning algorithm
 - binary and multi-class classification analysis through Machine Learning algorithms
 - variable importance ranking
 - accuracy metrics and comparison between different applications

we chose a subset of features and samples for ML applications to the DIII-D database for disruption prediction

10 features out of ~40 available parameters	li	lp_error_fraction	Vloop
mainly dimensionless or machine-independent parameters	q95	radiated_fraction	nlamp
	beta_p	dWmhd_dt	
	n/nG	Te_HWHM	

focus on **flattop disruptions: 195** flattop **disruptions** complemented by an analogous number of discharges that did not disrupt, possibly extracted from the same experiments (similar operational space) \Rightarrow **392 discharges**

~70,000 samples for each of the 10 chosen input variables

reliable knowledge base capable of highlighting the underlying physics :

- validated signals and EFIT reconstructions
- avoided intentional disruptions
- avoided hardware-related disruptions by specifically checking for feedback control on plasma current or UFOs events

a plethora of ML algorithms is available in literature – already tested on other devices for disruption prediction

- ML supervised and unsupervised algorithms, mainly developed at JET and also studied in real-time environment, "**black box**" approach:
 - Artificial Neural Networks[1-2], multi-tiered Support Vector Machines[3], Manifolds and Generative Topographic Maps[4]

[1] G. Pautasso et al. Nuclear Fusion 42 (2002) 100-108

[2] B. Cannas et al. Nuclear Fusion 44 (2004) 68-76

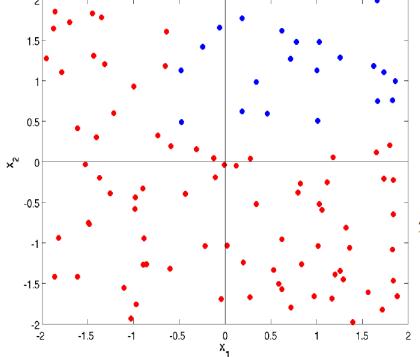
[3] J. Vega et al. Fusion Engineering and Design 88 (2013)

[4] B. Cannas et al. Nuclear Fusion 57 (2013) 093023

- to better understand the dataset: "white box" approach
 - inner components and logic are available for inspection
 - importance of individual features can be determined
- Random Forests[5]: a large collection of randomized de-correlated decision trees that can be used to solve both classification and regression problems

[5] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001

- **CART** (Classification and Regression Trees) algorithms repeatedly partition the input space, implementing a test function at each split (node), to build a tree whose nodes are as pure as possible
- 2 features (x₁, x₂) and 2 classes (red, blue)

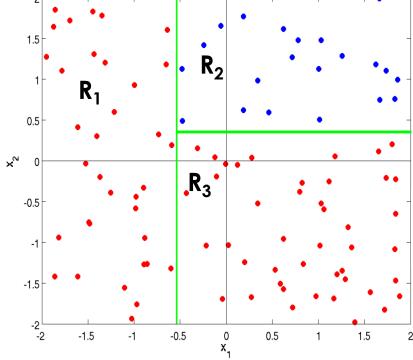


the algorithm selects a splitting value to partition the dataset, by **minimizing** an **impurity** measure:

$$y'_{m} = -\sum_{j=1}^{n} \frac{N_{mj}}{N_{m}} \sum_{i=1}^{K} p^{i}_{mj} \log_{2} p^{i}_{mj}$$

E. Alpaydin, "Introduction to Machine Learning", 2nd edition, MIT Press

- **CART** (Classification and Regression Trees) algorithms repeatedly partition the input space, implementing a test function at each split (node), to build a tree whose nodes are as pure as possible
- 2 features (x₁, x₂) and 2 classes (red, blue)



the algorithm selects a splitting value to partition the dataset, by **minimizing** an **impurity** measure:

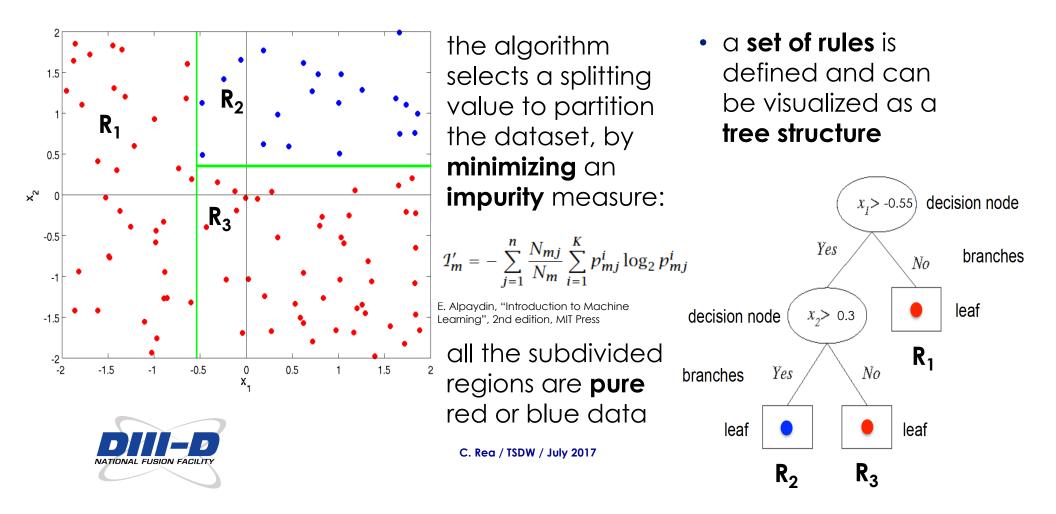
$$\mathcal{I}'_{m} = -\sum_{j=1}^{n} \frac{N_{mj}}{N_{m}} \sum_{i=1}^{K} p^{i}_{mj} \log_{2} p^{i}_{mj}$$

E. Alpaydin, "Introduction to Machine Learning", 2nd edition, MIT Press

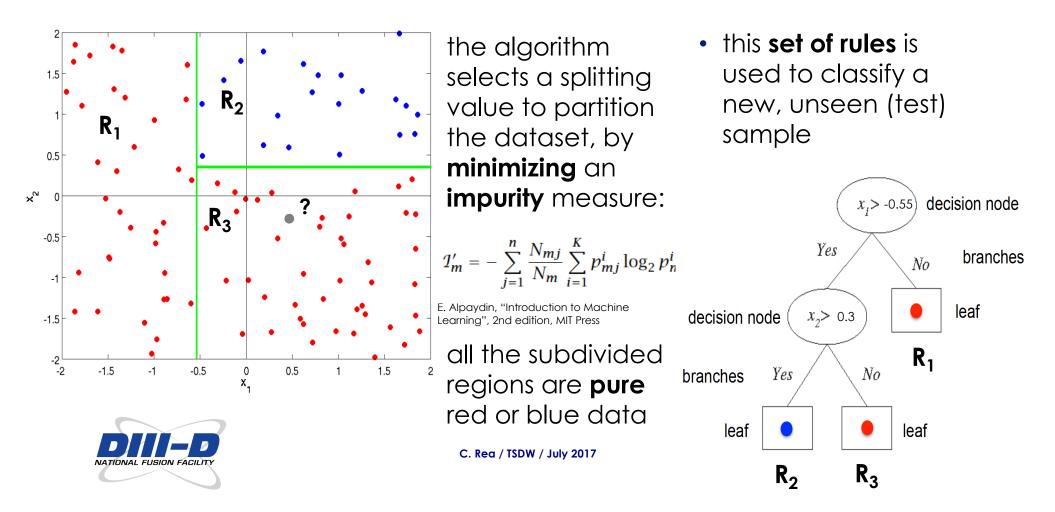
all the subdivided regions are **pure** red or blue data a set of rules is defined and can be visualized as a tree structure

C. Rea / TSDW / July 2017

- **CART** (Classification and Regression Trees) algorithms repeatedly partition the input space, implementing a test function at each split (node), to build a tree whose nodes are as pure as possible
- 2 features (x₁, x₂) and 2 classes (red, blue)



- **CART** (Classification and Regression Trees) algorithms repeatedly partition the input space, implementing a test function at each split (node), to build a tree whose nodes are as pure as possible
- 2 features (x₁, x₂) and 2 classes (red, blue)



recursive binary trees have a key feature: interpretability, but they tend to overfit – pruning needed

 decision trees have advantages and limitations, as well as other ML algorithms - Random Forests seems a promising algorithm

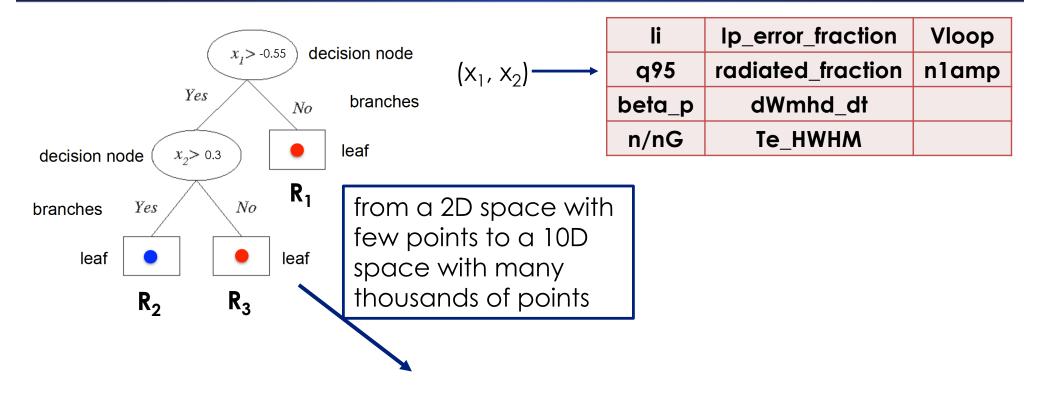
for classification purposes:	RF	Tree	Neural Nets	SVMs
no overfitting		•	•	•
intrinsic feature selection and robustness to outliers	٠	•	•	•
parameter tuning			•	•
non-parametric models (no a-priori assumptions)	•	•	•	•
interpretability			•	
natural handling of mixed type data	٠	•	•	•
prediction accuracy		•		
time handling	•	•	•	•

Random Forests is an ensemble method, leveraging bootstrapping and averaging techniques (bagging)

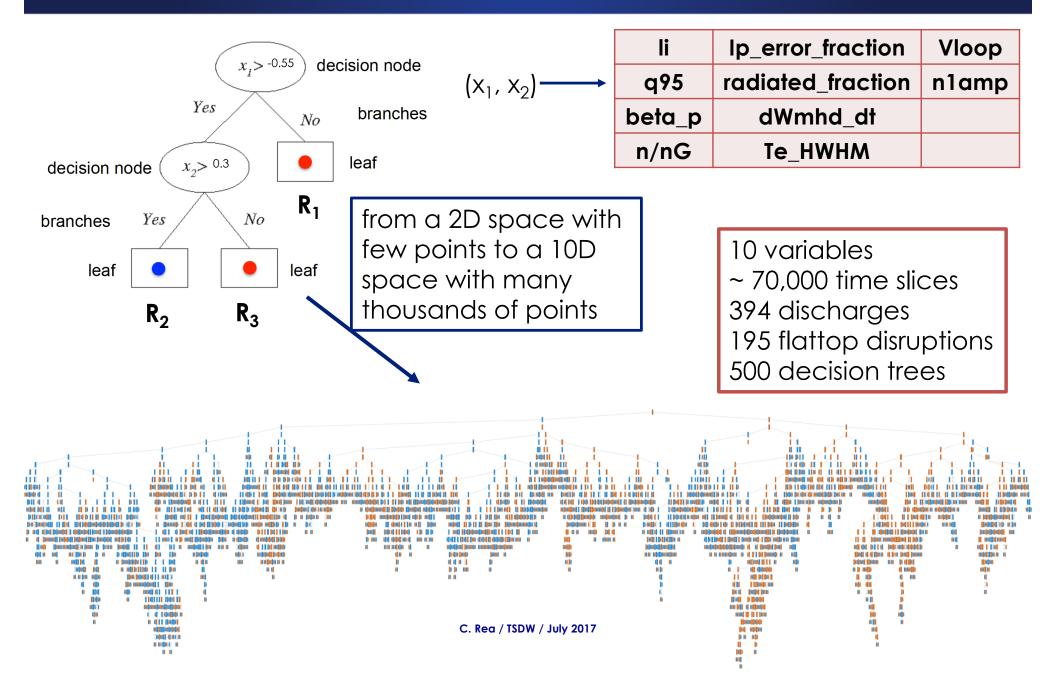
main steps of the algorithm:

- grow many trees (e.g., 500 trees) on **bootstrap samples** of the original training set
 - random sampling with replacement from the training set
- trees are fully grown **minimize bias** (no pruning needed)
- reduce variance of noisy but unbiased (fully grown) trees by averaging (regression) or majority voting (classification) for the final decisions on test samples
- very fast, highly parallelized algorithm

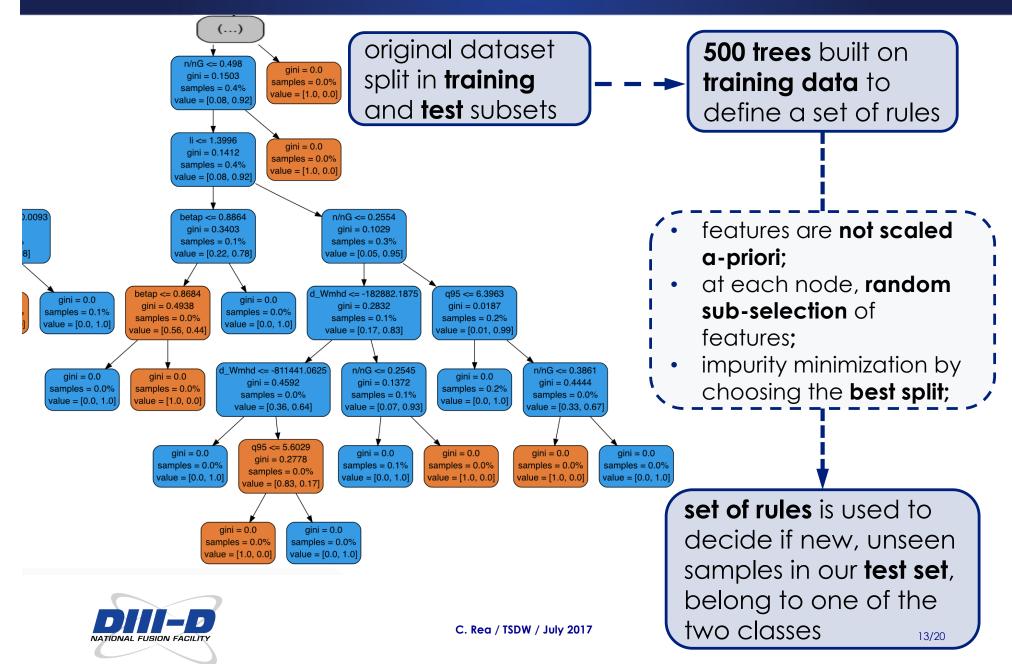
binary classification problem: labeling a time slice as disrupted/non-disrupted



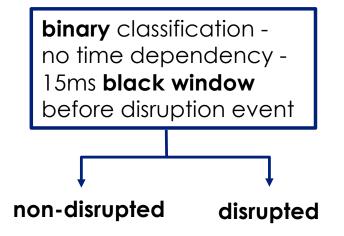
binary classification problem: disrupted/non-disrupted graphical depiction of a single tree in a Random Forests



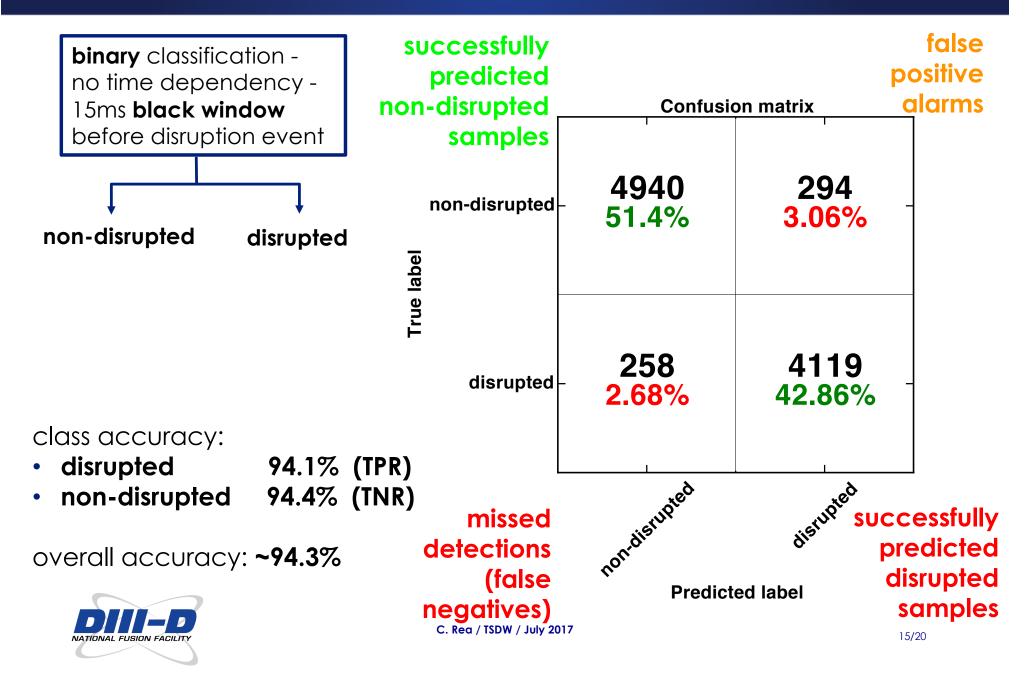
binary classification problem: disrupted/non-disrupted no time dependency – 10D feature vectors



confusion matrix is used as an accuracy metrics to assess the model's capability to discriminate between class labels

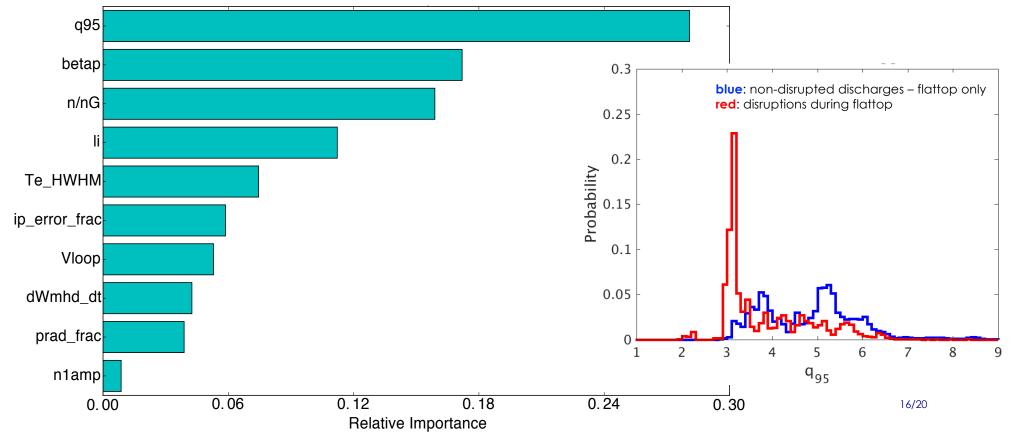


confusion matrix is used as an accuracy metrics to assess the model's capability to discriminate between class labels

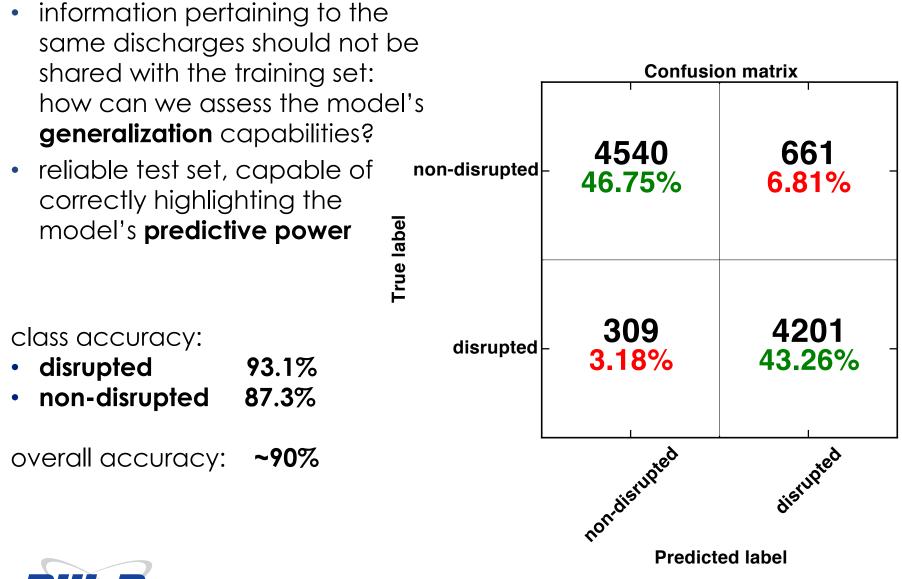


relative importance ranking can be extracted from the Random Forests – 'white box' approach

- relative variable importance wrt label predictability is defined as mean decrease impurity and can give indications on the underlying physics
- q95 is the relatively most important variable
 - probability distributions for disrupted and non-disrupted samples show different behaviors

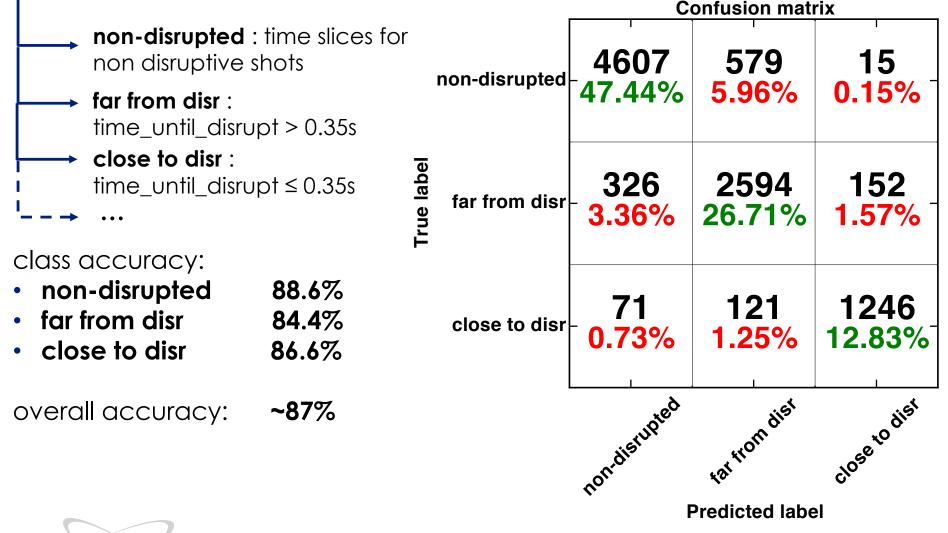


binary classification – train/test split on the basis of the whole discharges and not the individual samples



in the multi-class classification, the time dependency is introduced through the definition of different class labels

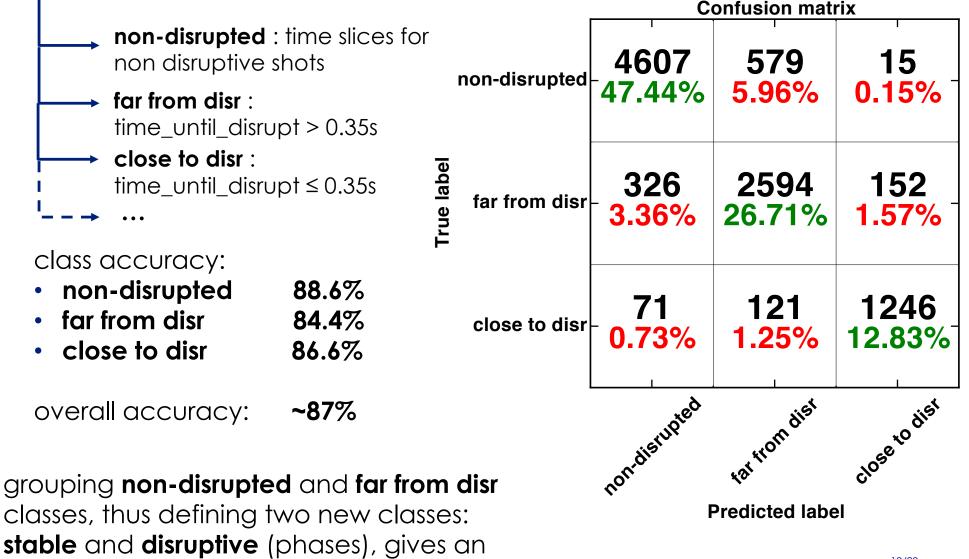
multi-class classification



in the multi-class classification, the time dependency is introduced through the definition of different class labels

multi-class classification

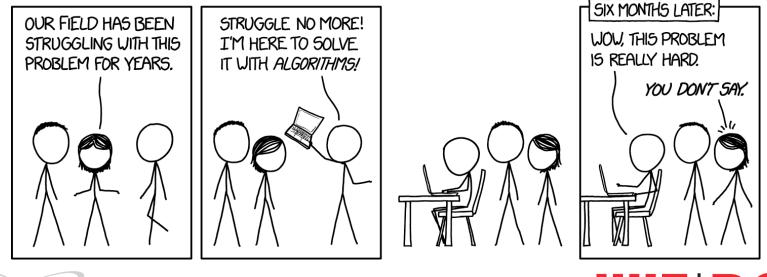
overall accuracy ~96%



19/20

conclusions and future work

- ML classification gives promising results, with optimal performances (Random Forests) and possibility of gaining insights on the dataset
- address the disruption-proximity problem: "how much time until the discharge is going to disrupt" - possibly evaluating different algorithms that could best perform in case of regression problems
- real-time integration with the PCS
- dimensionless and machine-independent features enable crossdevice analysis: comparison with EAST and C-Mod data and possible extrapolation to ITER

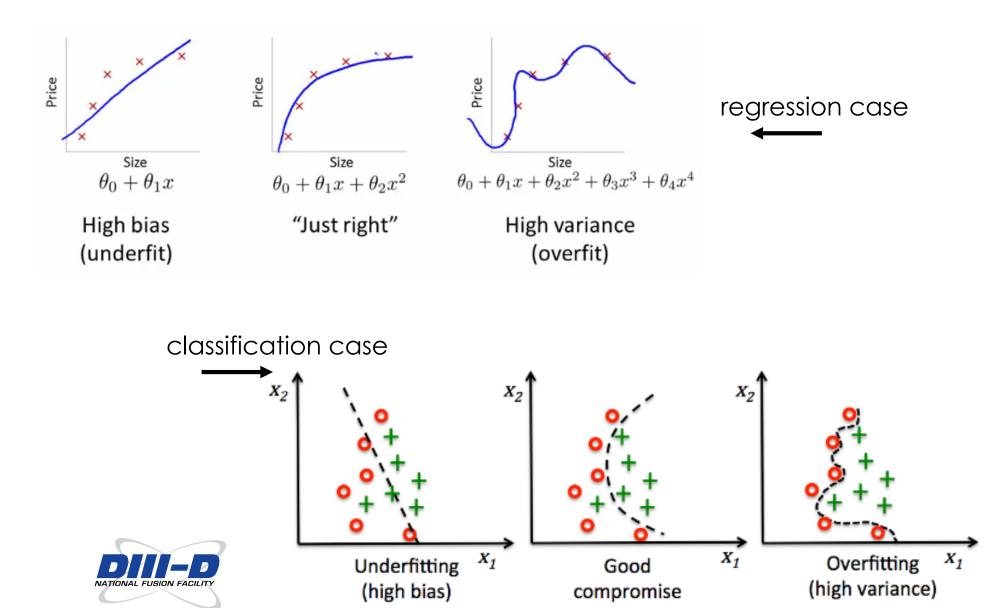


C. Rea / TSDW / July 2017

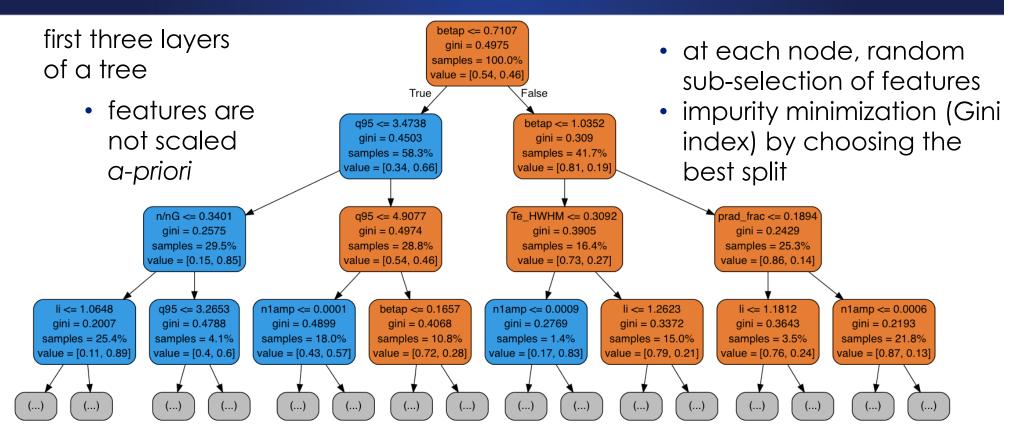
Plasma Science and Fusion Center

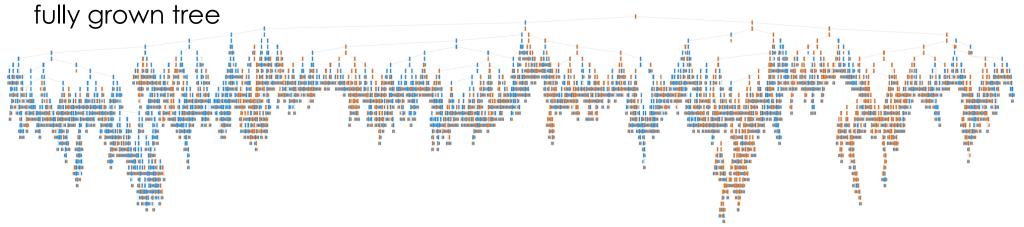
backup slides

bias vs variance aka underfitting vs overfitting

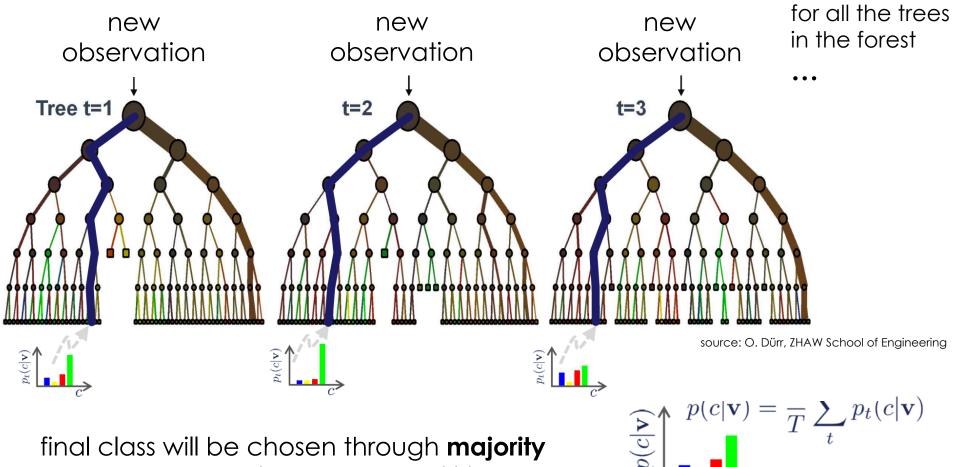


graphical depiction of a single tree in a Random Forests in a classification scheme – disrupted/non-disrupted





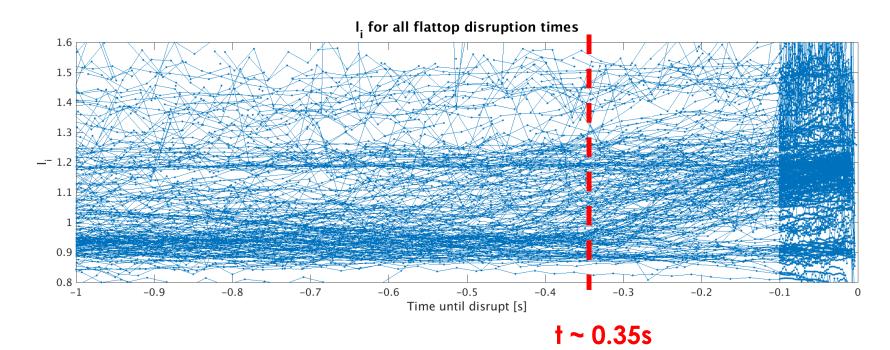
how to classify a new sample belonging to the test subset with a Random Forests and how to assess the classifier's accuracy



final class will be chosen through majority vote or by averaging the probabilities

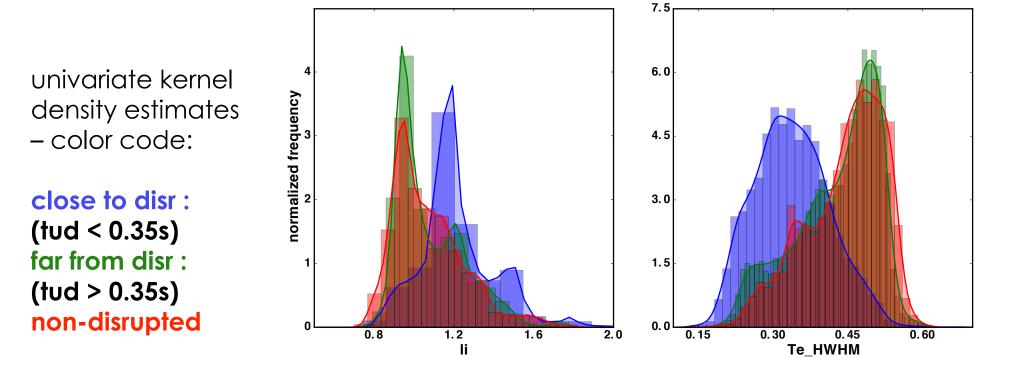
univariate analysis on input parameters leads us to set the proper discrimination threshold in time between classes

- class labels have an induced time dependency for the human eye
- the threshold for the discrimination between the labels close to disr and far from disr is chosen on the basis of the univariate analysis of individual input parameters:

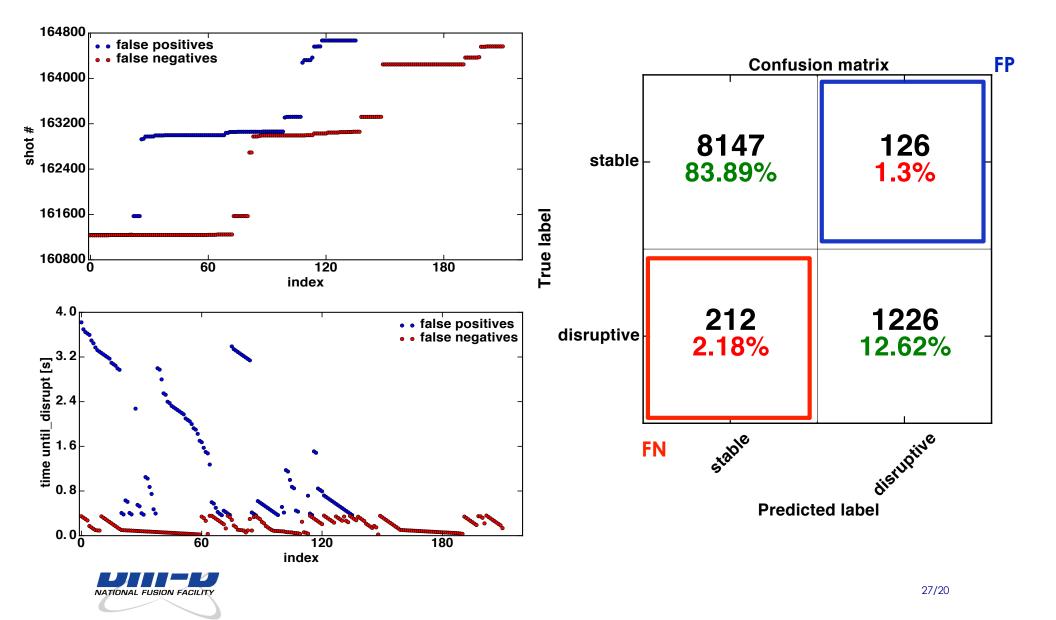


univariate analysis on input parameters leads us to set the proper discrimination threshold in time between classes

- class labels have an induced time dependency for the human eye
- the threshold for the discrimination between the labels close to disr and far from disr is chosen on the basis of the univariate analysis of individual input parameters:



false negatives and false positives distributions reveal a close dependency on a certain number of discharges



ROCs illustrate relative tradeoff between benefits (true positives) and costs (false positives) of binary classifiers

- RF (blue) maximizes the AUC (Area Under the Curve) if compared to Multi-Layer Perceptron (MLP) or Support Vector Machine (SVM)
- RF catches a higher number of correct classification with respect to a lower number of false positives

