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• the problem complexity has motivated the recent efforts for 
development of data-driven predictors and Machine Learning studies 
to successfully predict disruption events with sufficient warning time

• SQL databases created, gathering time series of relevant plasma 
parameters: tables available on DIII-D, EAST and C-Mod (cross-device 
analysis)
– more than 40 available parameters, ~500k samples per parameter
– both disrupted and non-disrupted discharges, focus on 2015 

campaigns for now

• exploratory studies to gain insights on the DIII-D dataset before 
addressing the problem of a disruption-warning algorithm
– binary and multi-class classification analysis through Machine 

Learning algorithms
– variable importance ranking
– accuracy metrics and comparison between different applications

the successful avoidance of disruption events is extremely 
relevant for fusion devices and in particular for ITER  

C. Rea / TSDW / July 2017
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10 features out of ~40 available parameters

mainly dimensionless or                                                                       
machine-independent parameters

focus on flattop disruptions: 195 flattop disruptions complemented by an 
analogous number of discharges that did not disrupt, possibly extracted 
from the same experiments (similar operational space) ⟹ 392 discharges

~70,000 samples for each of the 10 chosen input variables

reliable knowledge base capable of highlighting the underlying physics :
– validated signals and EFIT reconstructions
– avoided intentional disruptions
– avoided hardware-related disruptions by specifically checking for 

feedback control on plasma current or UFOs events

we chose a subset of features and samples for ML 
applications to the DIII-D database for disruption prediction

li Ip_error_fraction Vloop
q95 radiated_fraction n1amp

beta_p dWmhd_dt
n/nG Te_HWHM
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• ML supervised and unsupervised algorithms, mainly developed at JET 
and also studied in real-time environment, “black box” approach: 
– Artificial Neural Networks[1-2], multi-tiered Support Vector Machines[3], 

Manifolds and Generative Topographic Maps[4]

[1] G. Pautasso et al. Nuclear Fusion 42 (2002) 100-108
[2] B. Cannas et al. Nuclear Fusion 44 (2004) 68-76 
[3] J. Vega et al. Fusion Engineering and Design 88 (2013)
[4] B. Cannas et al. Nuclear Fusion 57 (2013) 093023 

• to better understand the dataset: “white box” approach
− inner components and logic are available for inspection 
− importance of individual features can be determined

• Random Forests[5]: a large collection of randomized de-correlated 
decision trees that can be used to solve both classification and 
regression problems

[5] L. Breiman, “Random Forests”, Machine Learning, 45(1), 5-32, 2001

a plethora of ML algorithms is available in literature –
already tested on other devices for disruption prediction

C. Rea / TSDW / July 2017
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• CART (Classification and Regression Trees) algorithms repeatedly 
partition the input space, implementing a test function at each split 
(node), to build a tree whose nodes are as pure as possible

• 2 features (x1, x2) and 2 classes (red, blue)

the algorithm 
selects a splitting 
value to partition 
the dataset, by 
minimizing an 
impurity measure:

E. Alpaydin, “Introduction to Machine 
Learning”, 2nd edition, MIT Press

decision trees are hierarchical data structures implementing 
the divide-and-conquer strategy: 2D classification example

C. Rea / TSDW / July 2017
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• a set of rules is 
defined and can 
be visualized as a 
tree structure

decision trees are hierarchical data structures implementing 
the divide-and-conquer strategy: 2D classification example
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• a set of rules is 
defined and can 
be visualized as a 
tree structure
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• this set of rules is 
used to classify a 
new, unseen (test) 
sample

?

decision trees are hierarchical data structures implementing 
the divide-and-conquer strategy: 2D classification example
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• decision trees have advantages and limitations, as well as other ML 
algorithms - Random Forests seems a promising algorithm 

C. Rea / TSDW / July 2017

for classification purposes: RF Tree Neural Nets SVMs
no overfitting
intrinsic feature selection and
robustness to outliers
parameter tuning
non-parametric models 
(no a-priori assumptions)
interpretability
natural handling of mixed type 
data
prediction accuracy
time handling

good poorfair

recursive binary trees have a key feature: interpretability, but 
they tend to overfit – pruning needed
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main steps of the algorithm:

• grow many trees (e.g., 500 trees) on bootstrap samples of the original 
training set
– random sampling with replacement from the training set

• trees are fully grown - minimize bias (no pruning needed)

• reduce variance of noisy but unbiased (fully grown) trees by 
averaging (regression) or majority voting (classification) for the final 
decisions on test samples

• very fast, highly parallelized algorithm

C. Rea / TSDW / July 2017

Random Forests is an ensemble method, leveraging 
bootstrapping and averaging techniques (bagging)
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binary classification problem: 
labeling a time slice as disrupted/non-disrupted

-0.55

0.3

(x1, x2)
li Ip_error_fraction Vloop

q95 radiated_fraction n1amp
beta_p dWmhd_dt
n/nG Te_HWHM
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from a 2D space with 
few points to a 10D 
space with many 
thousands of points

R1

R3R2
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from a 2D space with 
few points to a 10D 
space with many 
thousands of points
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10 variables
~ 70,000 time slices
394 discharges
195 flattop disruptions
500 decision trees

binary classification problem: disrupted/non-disrupted
graphical depiction of a single tree in a Random Forests

R1

R3R2
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original dataset 
split in training
and test subsets

500 trees built on 
training data to 
define a set of rules

set of rules is used to 
decide if new, unseen 
samples in our test set, 
belong to one of the 
two classes

• features are not scaled 
a-priori;

• at each node, random 
sub-selection of 
features;

• impurity minimization by 
choosing the best split;

C. Rea / TSDW / July 2017

binary classification problem: disrupted/non-disrupted
no time dependency – 10D feature vectors
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binary classification -
no time dependency -
15ms black window 
before disruption event

disruptednon-disrupted

C. Rea / TSDW / July 2017

confusion matrix is used as an accuracy metrics to assess the 
model’s capability to discriminate between class labels
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disr
upted

Predicted label

non-disrupted

disrupted
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51.4% 3.06%

2.68% 42.86%

4940 294

258 4119

Confusion matrix

binary classification -
no time dependency -
15ms black window 
before disruption event

successfully
predicted 
disrupted 
samples

false 
positive 
alarms

missed 
detections 

(false 
negatives)

successfully
predicted 

non-disrupted 
samples

disruptednon-disrupted

class accuracy:
• disrupted 94.1%  (TPR) 
• non-disrupted     94.4%  (TNR)

overall accuracy: ~94.3%

C. Rea / TSDW / July 2017

confusion matrix is used as an accuracy metrics to assess the 
model’s capability to discriminate between class labels
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blue: non-disrupted discharges – flattop only 
red: disruptions during flattop

• relative variable importance wrt label predictability is defined as 
mean decrease impurity and can give indications on the underlying 
physics

• q95 is the relatively most important variable
– probability distributions for disrupted and non-disrupted samples show 

different behaviors

relative importance ranking can be extracted from the 
Random Forests – ‘white box’ approach
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• information pertaining to the 
same discharges should not be 
shared with the training set: 
how can we assess the model’s 
generalization capabilities?

• reliable test set, capable of 
correctly highlighting the 
model’s predictive power

non-disr
upted

disr
upted

Predicted label

non-disrupted

disrupted
Tr

ue
 la
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l

46.75% 6.81%

3.18% 43.26%

4540 661

309 4201

Confusion matrix

class accuracy:
• disrupted 93.1%
• non-disrupted     87.3% 

overall accuracy: ~90%

C. Rea / TSDW / July 2017

binary classification – train/test split on the basis of the whole 
discharges and not the individual samples
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Confusion matrix

far from disr : 
time_until_disrupt > 0.35s

multi-class classification

non-disrupted : time slices for 
non disruptive shots

close to disr : 
time_until_disrupt ≤ 0.35s
…

class accuracy:
• non-disrupted 88.6%
• far from disr     84.4% 
• close to disr 86.6%

overall accuracy: ~87%

C. Rea / TSDW / July 2017

in the multi-class classification, the time dependency is 
introduced through the definition of different class labels
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far from disr : 
time_until_disrupt > 0.35s

multi-class classification

non-disrupted : time slices for 
non disruptive shots

close to disr : 
time_until_disrupt ≤ 0.35s
…

class accuracy:
• non-disrupted 88.6%
• far from disr     84.4% 
• close to disr 86.6%

overall accuracy: ~87%

grouping non-disrupted and far from disr
classes, thus defining two new classes: 
stable and disruptive (phases), gives an 
overall accuracy ~96%

in the multi-class classification, the time dependency is 
introduced through the definition of different class labels
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• ML classification gives promising results, with optimal performances 
(Random Forests) and possibility of gaining insights on the dataset

• address the disruption-proximity problem:  “how much time until the 
discharge is going to disrupt” - possibly evaluating different algorithms 
that could best perform in case of regression problems

• real-time integration with the PCS
• dimensionless and machine-independent features enable cross-

device analysis: comparison with EAST and C-Mod data and possible 
extrapolation to ITER

C. Rea / IAEA-TM FDPVA / May 2017

C. Rea / TSDW / July 2017

conclusions and future work
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backup slides



22/20

bias vs variance aka underfitting vs overfitting

regression case

classification case
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graphical depiction of a single tree in a Random Forests 
in a classification scheme – disrupted/non-disrupted

fully grown tree

first three layers
of a tree

• at each node, random 
sub-selection of features

• impurity minimization (Gini 
index) by choosing the 
best split 

• features are 
not scaled 
a-priori
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how to classify a new sample belonging to the test subset with 
a Random Forests and how to assess the classifier’s accuracy

for all the trees 
in the forest
…

final class will be chosen through majority 
vote or by averaging the probabilities

source: O. Dürr, ZHAW School of Engineering

new 
observation

new 
observation

new 
observation
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• class labels have an induced time dependency for the human eye
• the threshold for the discrimination between the labels close to disr 

and far from disr is chosen on the basis of the univariate analysis of 
individual input parameters:

t ~ 0.35s

univariate analysis on input parameters leads us to set the 
proper discrimination threshold in time between classes
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• class labels have an induced time dependency for the human eye
• the threshold for the discrimination between the labels close to disr 

and far from disr is chosen on the basis of the univariate analysis of 
individual input parameters:

univariate analysis on input parameters leads us to set the 
proper discrimination threshold in time between classes
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ROCs illustrate relative tradeoff between benefits (true 
positives) and costs (false positives) of binary classifiers
• RF (blue) maximizes the AUC (Area Under the Curve) if compared to 

Multi-Layer Perceptron (MLP) or Support Vector Machine (SVM)
• RF catches a higher number of correct classification with respect to a 

lower number of false positives
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