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Transport problem of interest
+ We are interested in the solution of Fokker-Planck equations of the form
d d >
g + ; aaxi[b,- fl= 2 aal ; [K’! fl, f(x;, t =0) = fi(x)

where b; = bi(x1, ... Xq, ) is the drift, Kj = Kjj(x1, ... Xxq, t) the diffusion tensor,
f = f(x1,...xq) the distribution function in RY with coordinates (x1,...Xq), and
fo(x;) the initial condition.

« This is a problem of significant interest in many areas, including plasma physics
and in particular runaway electrons.

« In general, this is a computational challenging problem because of spatiotemporal
multi-scale dynamics in b; and Kj;, complex domains, and high-dimesionality.

» Our goal is to present a machine learning method to overcome some of these
difficulties.
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Particle-based approach
» The Fokker-Planck partial differential equation of interest is mathematically
equivalent to a system of stochastic differential equations of the form

dx; = b(x, t)dt + o(x, t)dW;, Xi—0 = Xg

where dW; is a Wiener stochastic process (Brownian motion)

 This equivalence is at the heart of the extensively used Monte-Carlo method for
the solution of transport problems in plasma physics.

« For example, in the study of runaway electrons the drift term, b(x, t)dt, includes
electric field acceleration, Coulomb drag, and velocity drifts, and the stochastic
term o (x, t)dW models collisional processes, e.g., pitch angle scattering.

10
dp = [Eg — 77’0 (1-€%) —Cr+ 2 9 (pch)] dt +\/2Ca dW,
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Green’s function formulation

+ Machine learning (ML) methods for this problem are typically based on using
known or precomputed solutions to train an algorithm (e.g., a neural network) that
could then be used as a black box to obtain new solutions.

« Two potential limitations of this approach are the cost of the training and the ability
of the algorithm to go beyond the domain of the training.

+ A particular challenge of the initial value problem of the Fokker-Planck equation is
that the solution f(x;, t) depends on fy(x) and every time the initial condition
changes the algorithm must be retrained.

+ To circumvent this limitation we will consider the solution in terms of the Green’s

function G(x;, x;, t)
f(xi, t) /dx1 /dxd (xi, X/, (X))

and develop a machine learning surrogate model of the Green'’s function.
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Machine learning based surrogate model of transition probability

« In the particle based formulation the Green’s function G(x;, xf, t) corresponds to
the conditional (transition) probability p(x;|xo) for a particle to be at x; at time ¢ if it
was Xg attime t = 0.

« Given an ensemble of particles with initial conditions {xo} with probability density
p(Xo), the probability density, p(x;), of the final positions of the particles {x;}
evolving under the stochastic differential equation

dx; = b(x, t)dt + o(x, t)dW;, Xi—0 = Xg

is given by
p(x;) = / dxo p(xe|x0)p(Xo)

« Our goal is to develop a surrogate model for p(x;|xo) based on normalizing flows,
a powerful machine learning method to estimate and sample arbitrary probability

distribution functions.
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Normalizing flow
A normalizing flow is an invertible transformation that maps a complex probability
distribution into a simple distribution

% = pz(h(x))|detdx(x)|

px(x) = pz(z)

Normalizing direction

z=h(x)

Given * : Transformed

simple

complex i le
probability ﬁ p_rob_abﬂ!ty
distribution distribution

i —— (e-g., Gaussian)
x 2

\X:h_'lm/
Generative direction

With a normalizing flow we can generate samples {xm}%:1 of px(x) by mapping

samples {z,}M_, of a simple (e.g., Gaussian) distribution using x = h~'(z)
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Pseudo-reversible normalizing flow
In general the inverse transformation is not known or it is computationally expensive

Normalizing direction Generative direction

z
Given, complex Transformed, simple Generated, complex
probability distribution probability distribution probability distribution

(e.g., Gaussian)

Pseudo-reversible normalizing flows relax the exact invertibility by imposing g ~ h™~"
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Architecture of pseudo-reversible flow surrogate model for p(x:|xo)
» We start with a uniform distribution of initial conditions {x(() }fori=1,...Nand
solve the SDE to get {xt') | xg')} which by definition are distributed according to
the (unknown) transition probability p(x:|Xo)
 The normalizing flow function hy transforms {xt | x } into the Gaussian
distributed random variable {z\"}.
« The function g ~ h; ' transform the Gaussian variable, z;, and the initial
condition, zy = Xo, into {)"(gi)} ~ {xgi) | xgi)} keeping Xo = Zp = Xo
+ Once trained, the function g1 is the surrogate model of p(x¢|Xo).
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Neural Network computation of pseudo-reversible flow functions

X0 © Zy G Xo= Xo
Pseudo-reversivility
g~ht
xt it =~ xt
Zy
zy = h(x, xo; Op) X = 9(2 20;0,4)

The parameters {6, 03} are obtained by minimizing the NN loss function
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Neural Network loss function
(n JmV

+ Given a training data set Vi ain = {xo ) X;
are obtained by minimizing the loss function

L= L4 (Gh) + )\Ez((gh, 09)
* L1(6h) = —4; log L(6n) where L is the likelihood

1 , the NN parameters, {6h,0q},

N N
L(0n) = [T Px(e™) = TT p2(ha(x™: 0n)) |actdn(x™;0n)
n=1 n=1

L>(6n, 0g) quantifies the reversibility of the NN
N
1
Lo=x>" (Hx("> — g(h(x™; 6,); eg)H + ‘det Jg(h(x(M)) det J(x(M) — 1 ‘) :
n=1

+ Minimizing £ maximizes the likelihood and minimizes erroring ~ h=".
A controls the relative importance of likelihood and invertibility, and it is selected
,_,&OAKRID@y minimizing the cross entropy.
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Normalizing flow surrogate model workflow

Offline Training

Training Data Set:
particles initial and terminal

positions {x,}N_, and
{xT}#=1

/ |

\ 2z, = h(xy, x0; Op) X = 9(2y, 20;8”)/
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Surrogate model for test particles

Test Data Set:

distribution

particles initial positions
{xo}M_, from an arbitrary

1
#1 Input:

P

&

na—— NN

A surrogate model for
sampling conditional
distributions py, |x,

#2 Input

——————

Online cost is
mainly from the
generation of

normal distribution
samples. Very
cheap

Generate normal
distribution
samples {z}¥_,

Synthesize test particles terminal
positions {x;}4_,



Benchmark, convergence study
We consider the one-dimensional Fokker-Planck equation for f = f(x, t) with x € (0, L)
of 0 1 92

at— dx
with corresponding stochastic equation

dx = b(x)dt + o(x)dW .
For b(x) = 2y/x + 1 and o(x) = 2,/x this problem has the exact solution
Xt = (\/)To—i_ t+ Wt)27

with transition probability

p(x, t|xo, to) = 1 [exp ((\f VX0 — t)2> e <(ﬁ+ X + t)2>]

2+ 2mtx 2t 2t

and thus, the solution of the initial value problem f(x, t = 0) = fo(x) is

L
%0AK RIDGE f(x, 1) = /0 p(x, t|xo, to)fo(x) dx

onal Laboratory




Decay of loss function and optimal lambda

* Training: Niain = 20000 initial positions {X( )}N“aln sampled from uniform
distribution over D = [0, 5], and {X; ")}'\’“‘“n computed by integrating the SDE.

* Neural network has N,y = 1 hidden layer with Nycuron = 256 neurons.

* Xin £ = L1(6n) + AL2(6h, 0g) selected by minimizing the cross-entropy
He(Pexact papprox) = f Pexact(X) log papprox(X ) dx

Decay of loss function during training 7»_1 =1 A=50

—— training dataset 1.995

—— exact pdf 0.35 —— exact pdf
0.30 W PR-NF samples 0.30 = PR-NF samples
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Solution for different initial conditions

Once trained, the surrogate model can be use to solve the problem for different initial
conditions by transforming samples from a Gaussian distribution

/ & function N\ bar / sin2 N/ ricker N\
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Convergence of method
Introducing the entropy, H(px) and cross entropy Hc(px, px), of the exact px and the
surrogate model py distributions,

H(px) = /R dPx(X) log px(x)dx,  He(px,px) = /R dﬁ}logpx(X)dx

the KL-divergence,
Dk (px || px) = H(px) — He(px, Px)
is a measure of the difference between the two PDFs

Decay of loss function during training Decay of KL divergence during testing

—— training dataset

loss £
-
KL-divergence
u
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epoch
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Hot tail generation of runaway electrons during thermal quench

2D Fokker-Planck for f as function of momentum, p, and pitch angle &

of of  (1—¢)of] 10 of Cs O ,
- T p ag]ﬂazap{” [CAaHCFf] zask ‘“s]}

Assume fast thermal quench with plasma parameters depending on final plasma
temperature T;.

Electric field from Ohm’s law with temperature dependent Spitzer resistivity

Hot tail generation of runaway electrons studied by computing the evolution for an
initial Maxwellian at temperature To > T¢

Training performed by solving stochastic equations

do = [Eg—(1—,52) Cr +;§D( 2CA)] dt + \/2Ca dW,
2 2 Yo

de = E(1=¢) | ¢( 5)—2&5 ot + V298 A aw,
p Ty p p
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Surrogate model reproduces high-fidelity direct simulation

¥
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Normalizing flow surrogate model
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Surrogate model also reproduces expensive high-fidelity simula-
tions of hot-tail RE production rate as function of temperature

Exploration of the hot-tail generation of REs
requires the solution of this problem for different
initial conditions.

Production Rate: ni = [, [%" f, . (p, £)dpde,
for different values of Ty, where p* = 1.75.

The total running time of the surrogate model
consists of two parts, the offline cost is around
Comine = 1354 sec and the online cost is around
Conline = 12 sec.

The total running time of the MC method is around
Cnc = 4000 sec. MC method depends on i,
temporal step size, ...
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Transport in the presence of a 3D chaotic flow
« To test the surrogate model in the case of complex 3D transport we consider
of(t, x)
ot
Vx = [Asinz + Ccosy], vy = [Bsinx + Acos z], v; = [Csiny + Bcos x] .

+ v - VF(t,x) = DV2(t, x),

» This ABC velocity field is known to exhibit very complex 3D chaotic trajectories

« Problem of interest to fluid models of RE
Mixing in the ABC flow Poincare plots of chaotic ABC flow
x=0

0 2 4 6
X

2
[Adapted from Katsanoulis et al., J. Fluid Mech. (2023), vol. 954, A28]
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Surrogate model reproduces high-fidelity direct simulations
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Surrogate model reproduces high-fidelity direct simulations

Target domain

Initial distribution

(., ),

Target density

nT(xc,zc):/ m/ /W F(@,Y, 2, tmax) dxdydz

Initial distribution

Running time: Cyc = 5320 sec. Surrogate model Comine = 2200 sec, and Copiine = 50 sec.
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Summary
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We proposed an accurate and efficient surrogate method for the solution of initial
value problems of the Fokker-Planck equation with arbitrary initial conditions.

The method is based on normalizing flows, a powerful machine learning
generative model.

We presented a 1D benchmark/convergence example, and applications to hot-tail
generation of runaway electrons in 2D, and transports in 3D chaotic flows.

The surrogate model reproduces the time-consuming high-fidelity Monte-Carlo
simulations.

Further details can be found in

M. Yang, P. Wang, D. del-Castillo-Negrete, Y. Cao and G. Zhang,

“A pseudo-reversible normalizing flow for stochastic dynamical systems with
various initial distributions.” Submitted to SIAM Journal of Scientific Computing
(2023). https://arxiv.org/pdf/2306.05580.pdf
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