
A machine learning normalizing flow
surrogate model for runaway electron kinetic
simulations
D. del-Castillo-Negrete
Fusion Energy Division
ORNL Work done in collaboration with:

M.Yang, G. Zhang (ORNL)
P. Wang and Y. Cao (Auburn University)

Transport problem of interest

• We are interested in the solution of Fokker-Planck equations of the form

∂f
∂t

+
d∑

i=1

∂

∂x i [bi f] =
d∑

i,j=1

∂2

∂x ix j [Kij f] , f (xi , t = 0) = f0(xi)

where bi = bi(x1, . . . xd , t) is the drift, Kij = Kij(x1, . . . xd , t) the diffusion tensor,
f = f (x1, . . . xd) the distribution function in Rd with coordinates (x1, . . . xd), and
f0(xi) the initial condition.

• This is a problem of significant interest in many areas, including plasma physics
and in particular runaway electrons.

• In general, this is a computational challenging problem because of spatiotemporal
multi-scale dynamics in bi and Kij , complex domains, and high-dimesionality.

• Our goal is to present a machine learning method to overcome some of these
difficulties.

2

Particle-based approach
• The Fokker-Planck partial differential equation of interest is mathematically

equivalent to a system of stochastic differential equations of the form

dxt = b(x, t)dt + σ(x, t)dWt , xt=0 = x0

where dWt is a Wiener stochastic process (Brownian motion)
• This equivalence is at the heart of the extensively used Monte-Carlo method for

the solution of transport problems in plasma physics.
• For example, in the study of runaway electrons the drift term, b(x, t)dt , includes

electric field acceleration, Coulomb drag, and velocity drifts, and the stochastic
term σ(x, t)dW models collisional processes, e.g., pitch angle scattering.

dp =

[
Eξ − γp

τ

(
1 − ξ2)− CF +

1
p2

∂

∂p

(
p2CA

)]
dt +

√
2CA dWp

dξ =

[
E
(
1 − ξ2

)

p
+

ξ
(
1 − ξ2

)

τγ
− 2ξ

CB

p2

]
dt +

√
2CB

p

√
1 − ξ2 dWξ

3

Green’s function formulation
• Machine learning (ML) methods for this problem are typically based on using

known or precomputed solutions to train an algorithm (e.g., a neural network) that
could then be used as a black box to obtain new solutions.

• Two potential limitations of this approach are the cost of the training and the ability
of the algorithm to go beyond the domain of the training.

• A particular challenge of the initial value problem of the Fokker-Planck equation is
that the solution f (xi , t) depends on f0(x) and every time the initial condition
changes the algorithm must be retrained.

• To circumvent this limitation we will consider the solution in terms of the Green’s
function G(xi , x ′

j , t)

f (xi , t) =
∫

dx ′
1 . . .

∫
dx ′

d G(xi , x ′
j , t)f0(x

′
j)

and develop a machine learning surrogate model of the Green’s function.
4

Machine learning based surrogate model of transition probability

• In the particle based formulation the Green’s function G(xi , x ′
j , t) corresponds to

the conditional (transition) probability p(xt |x0) for a particle to be at xt at time t if it
was x0 at time t = 0.

• Given an ensemble of particles with initial conditions {x0} with probability density
p(x0), the probability density, p(xt), of the final positions of the particles {xt}
evolving under the stochastic differential equation

dxt = b(x, t)dt + σ(x, t)dWt , xt=0 = x0

is given by

p(xt) =

∫
dx0 p(xt |x0)p(x0)

• Our goal is to develop a surrogate model for p(xt |x0) based on normalizing flows,
a powerful machine learning method to estimate and sample arbitrary probability
distribution functions.

5

Normalizing flow
A normalizing flow is an invertible transformation that maps a complex probability
distribution into a simple distribution

pX (x) = pZ (z)
∣∣∣∣
∂z
∂x

∣∣∣∣ = pZ (h(x))|detJh(x)|

Normalizing direction

Generative direction

Given
complex

probability
distribution

Transformed
simple

probability
distribution

(e.g., Gaussian)

z = h(x)

x = h-1(z)
x z

With a normalizing flow we can generate samples {xm}M
m=1 of pX (x) by mapping

samples {zm}M
m=1 of a simple (e.g., Gaussian) distribution using x = h−1(z)

6

Pseudo-reversible normalizing flow

In general the inverse transformation is not known or it is computationally expensive

Given, complex
probability distribution

Transformed, simple
probability distribution

(e.g., Gaussian)

Generated, complex
probability distribution

z = h(x) !𝑥 = g(z)

x z !𝑥

Normalizing direction Generative direction

Pseudo-reversible normalizing flows relax the exact invertibility by imposing g ≈ h−1

7

Architecture of pseudo-reversible flow surrogate model for p(xt |x0)
• We start with a uniform distribution of initial conditions {x(i)

0 } for i = 1, . . .N and
solve the SDE to get {x(i)

t | x(i)
0 } which by definition are distributed according to

the (unknown) transition probability p(xt |x0)

• The normalizing flow function h1 transforms {x(i)
t | x(i)

0 } into the Gaussian
distributed random variable {z(i)t }.

• The function g1 ≈ h−1
1 transform the Gaussian variable, zt , and the initial

condition, z0 = x0, into {x̂(i)
t } ≈ {x(i)

t | x(i)
0 } keeping x̂0 = z0 = x0

• Once trained, the function g1 is the surrogate model of p(xt |x0).

A PR-NF FOR STOCHASTIC DYNAMICAL SYSTEMS 5

and bxt the outputs of g0 and g1, respectively. Note that bx0 = z0 = x0 because h0159

and g0 are identity maps.

Fig. 2. The network architecture of the proposed PR-NF model.
160

3.2. The loss function. The loss function is defined based on a training data161

set, i.e.,162

(3.4) Vtrain =
n

x(n)
oN

n=1
=
n

x
(n)
0 , x

(n)
t |x(n)

0

oN

n=1
,163

where {x
(n)
0 }N

n=1 is generated from the uniform distribution over the bounded domain164

D in Eq. (2.1). For each initial state x
(n)
0 , we numerically solve the SDE in Eq. (2.1)165

to obtain the sample x
(n)
t |x(n)

0 . The loss function consists of two components, i.e.,166

(3.5) L = L1 + �L2,167

where L1 is the negative log-likelihood loss defined by168

(3.6) L1 = � 1

N

NX

n=1

⇣
logpZt(h1(x

(n); ✓h)) + log
���detJh(x(n); ✓h)

���
⌘

,169

with pZt
(·) the probability density function of the standard normal distribution, and170

L2 is the pseudo-reversibility loss that measures the di↵erence between x and bx, i.e.,171

(3.7)

L2 =
1

N

NX

n=1

✓���x(n) � g(h(x(n); ✓h); ✓g)
���

2

2
+
���detJg(h(x(n))) detJh(x(n)) � 1

���
◆

,172

and � is a hyperparameter that will be discussed in Section 3.3.173

The Jacobian determinant in L1 can be written as174

(3.8) |detJh(x)| =

����det

✓
Id, 0
@zt

@x0
, @zt

@xt

◆���� =
����det

✓
@zt

@xt

◆���� ,175

where Id is a d ⇥ d identity matrix. The simplification in Eq. (3.8) is based on the176

fact h0 is an identity map with respect to x0. Thus, although we doubled the size177

of the input of the PR-NF model, the size of the Jacobian matrix is still d ⇥ d.178

The proposed PR-NF has O(d3) complexity in Jacobian determinant computation.179

However, we observe that it is not a bottleneck with GPU-accelerated linear algebra180

libraries in Pytorch and TensorFlow, especially for a wide range of physical processes,181

i.e., the examples in Section 5, in the phase space with dimension up to six.182

This manuscript is for review purposes only.

8

Neural Network computation of pseudo-reversible flow functions

!𝒙𝟎= 𝒙𝟎= =

!𝒙𝒕 ≈ 𝒙𝒕
𝒛𝒕

𝒛𝟎𝒙𝟎

𝒙𝒕

𝒛𝒕 = 𝒉(𝒙𝒕, 𝒙𝟎;	𝜽𝒉) !𝒙𝒕 = 𝒈(𝒛𝒕, 𝒛𝟎;𝜽𝒈)

𝒈 ≈ 𝒉%𝟏

Pseudo-reversivility

The parameters {θh, θg} are obtained by minimizing the NN loss function
9

Neural Network loss function
• Given a training data set Vtrain =

{
x(n)

0 , x(n)
t

}N

n=1
, the NN parameters, {θh, θg},

are obtained by minimizing the loss function

L = L1(θh) + λL2(θh, θg)

• L1(θh) = − 1
N log L(θh) where L is the likelihood

L(θh) =
N∏

n=1

pX (x
(n)
t) =

N∏

n=1

pZ (h1(x
(n)
t ; θh))

∣∣∣detJh(x
(n)
t ; θh)

∣∣∣

• L2(θh, θg) quantifies the reversibility of the NN

L2 =
1
N

N∑

n=1

(∥∥∥x(n) − g(h(x(n); θh); θg)
∥∥∥+

∣∣∣det Jg(h(x(n))) det Jh(x(n))− 1
∣∣∣
)
,

• Minimizing L maximizes the likelihood and minimizes error in g ≈ h−1.
• λ controls the relative importance of likelihood and invertibility, and it is selected

by minimizing the cross entropy. 10

Normalizing flow surrogate model workflow

!"!= "!= =

!"" ≈ ""
$"

$!"!

""

$" = &("", "!;	*#) !"" = +($", $!;*$)

+ ≈ &%&
Pseudo-reversivility

11

Benchmark, convergence study
We consider the one-dimensional Fokker-Planck equation for f = f (x , t) with x ∈ (0, L)

∂f
∂t

= − ∂

∂x
[b f] +

1
2

∂2

∂x2

[
σ2f

]
,

with corresponding stochastic equation

dx = b(x)dt + σ(x)dW .

For b(x) = 2
√

x + 1 and σ(x) = 2
√

x this problem has the exact solution

xt = (
√

x0 + t + Wt)
2,

with transition probability

p(x , t |x0, t0) =
1

2
√

2πtx

[
exp

(−(
√

x −√
x0 − t)2

2t

)
+ exp

(−(
√

x +
√

x0 + t)2

2t

)]

and thus, the solution of the initial value problem f (x , t = 0) = f0(x) is

f (x , t) =
∫ L

0
p(x , t |x0, t0)f0(x) dx

L = 5, t = 0.1.

12

Decay of loss function and optimal lambda

• Training: Ntrain = 20000 initial positions {X (n)
0 }Ntrain

n=1 sampled from uniform
distribution over D = [0, 5], and {X (n)

t }Ntrain
n=1 computed by integrating the SDE.

• Neural network has Nlayer = 1 hidden layer with Nneuron = 256 neurons.

• λ in L = L1(θh) + λL2(θh, θg) selected by minimizing the cross-entropy
Hc(pexact , papprox) =

∫
pexact(x) log papprox(x) dx

16 M. YANG, P. WANG, D. DEL-CASTILLO-NEGRETE, Y. CAO, G. ZHANG

where DKL can be approximated by the Riemann sum over a uniform mesh or the459

mean value of log
⇣

pexact(x)
papprox(x)

⌘
over the training dataset X based on the exact solution460

in Eq. (5.2). We monitor the KL divergence for di↵erent distributions during the461

training process. The consistency of decays between loss function and KL divergence462

illustrates that the loss function L defined in Eq. (3.5) involving the reversibility error463

is e↵ective to be regarded as a loss function for normalzizing flow.464

Fig. 4. The accuracy performance of the well-trained PR-NF model for test dataset. The top
row shows the initial distributions of four dataset: � func, bar, sin2, and ricker. The corresponding
plots on the bottom row present the fitting between the exact density of Xt (red curve) and the
histogram (generated by PR-NF model) at t = 0.1. The results demonstrate that the well-trained
PR-NF model can handle various initial conditions without re-training.

Fig. 5. The decay of loss function of training dataset (left panel) and the decay of KL divergence
of four test dataset (right panel). We monitor the KL divergence during the training process. The
consistency of decays between loss function and KL divergence demonstrates that the loss function
L defined in Eq. (3.5) involving the reversibility error is e↵ective to be regarded as a loss function
for normalzizing flow.

To illustrate the application of our method to high-dimensional problems, consider465

the ten-dimensional SDE466

(5.5) Xt = X0 +

Z t

0

Xsds +

Z t

0

KXsdWs with X0 2 D,467

This manuscript is for review purposes only.

Decay of loss function during training

A PR-NF FOR STOCHASTIC DYNAMICAL SYSTEMS 15

where X0 is the initial condition, and the corresponding conditional distribution is428

(5.3)

pXt|X0
(x|x0) =

1

2
p

2⇡tx

exp

✓�(
p

x �p
x0 � t)2

2t

◆
+ exp

✓�(
p

x +
p

x0 + t)2

2t

◆�
.429

The distribution of Xt subject to an initial distribution pX0
(x0) can be computed by430

the convolution with pXt|X0
(x|x0). Since the analytical solution is known, we use this431

example to test the accuracy of the propose method.432

The training dataset consists of Ntrain = 20000 samples with initial positions433

{X
(n)
0 }Ntrain

n=1 sampled from a uniform distribution over the domain D = [0, 5], and434

terminal positions {X
(n)
t }Ntrain

n=1 generated by MC simulations of Eq. (5.1). The neural435

network has Nlayer = 1 hidden layer with Nneuron = 256 neurons. The hyperparameter436

� in the loss function is selected according to the method described in Sec. 3.3. The437

left panel of Fig. 3 shows the cross entropy H(�) defined in Eq. (3.10) with di↵erent438

�. As it shown, the PR-NF model attains the minimum of H(�) when � = 50. The439

middle panel and right panel of Fig. 3 correspond to the accuracy performance of the440

proposed PR-NF model with two cases � = 1 and � = 50, respectively. The red curve441

is the exact density function and the histogram is synthesized by the PR-NF model.442

A good agreement is shown in the right panel (� = 50). In contrast, � = 1 is too small443

to guarantee the reversibility. Without the tuning process of �, the PR-NF model444

may fail to balance the L1 and L2, e.g., the middle panel of Fig. 3. The minimization445

of cross entropy H(�) in Section 3.3 is an e↵ective and appropriate approach to choose446

�. An optimal parameter � is necessary to obtain an accurate surrogate model.

Fig. 3. The left panel shows the cross entropy H(�), which attains the minimun when � = 50.
The middle and right panels show the fitting performance for � = 1 and � = 50, respectively. It
is observed that the accuracy of PR-NF model with � = 50 is better than the case � = 1. Without
the tuning process of �, the PR-NF model may fail to balance the L1 and L2 (e.g., � = 1 case).
The minimization of the cross entropy H(�) is an e↵ective and correct approach to choose �. The
PR-NF model with an optimal parameter � (� = 50 case) achieves a good fitting performance.

447

We now use the well-trained PR-NF model (� = 50) to sample Xt with variable448

initial distributions. The top row of Fig. 4 shows four di↵erent initial distributions,449

denoted as “� func”, “bar”, “sin2”, and “ricker”. The bottom row of Fig. 4 shows cor-450

responding histogram of Xt generated by the PR-NF model, where a good agreement451

with the exact density is observed. The results demonstrate that the well-trained PR-452

NF model can handle di↵erent initial conditions without additional training process.453

Figure 5 shows the decay of the loss function of training dataset (left panel) and454

the decay of the Kullback–Leibler (KL) divergence of the four initial distributions455

(right panel). The KL divergence formula is defined as the relative entropy from the456

approximate density (generated from PR-NF) papprox to the exact density pexact, i.e.,457

(5.4) DKL(pexact k papprox) =

Z 1

�1
pexact(x) log

✓
pexact(x)

papprox(x)

◆
dx,458

This manuscript is for review purposes only.

l=50

l=1 l=1 l=50

13

Solution for different initial conditions

Once trained, the surrogate model can be use to solve the problem for different initial
conditions by transforming samples from a Gaussian distribution

14

Convergence of method
Introducing the entropy, H(pX) and cross entropy Hc(pX , p̃X), of the exact pX and the
surrogate model p̃X distributions,

H(pX) =

∫

Rd
pX (x) log pX (x)dx , Hc(pX , p̃X) =

∫

Rd
p̃X log pX (x)dx

the KL-divergence,
DKL(pX ∥ p̃X) = H(pX)− Hc(pX , p̃X)

is a measure of the difference between the two PDFs

16 M. YANG, P. WANG, D. DEL-CASTILLO-NEGRETE, Y. CAO, G. ZHANG

where DKL can be approximated by the Riemann sum over a uniform mesh or the459

mean value of log
⇣

pexact(x)
papprox(x)

⌘
over the training dataset X based on the exact solution460

in Eq. (5.2). We monitor the KL divergence for di↵erent distributions during the461

training process. The consistency of decays between loss function and KL divergence462

illustrates that the loss function L defined in Eq. (3.5) involving the reversibility error463

is e↵ective to be regarded as a loss function for normalzizing flow.464

Fig. 4. The accuracy performance of the well-trained PR-NF model for test dataset. The top
row shows the initial distributions of four dataset: � func, bar, sin2, and ricker. The corresponding
plots on the bottom row present the fitting between the exact density of Xt (red curve) and the
histogram (generated by PR-NF model) at t = 0.1. The results demonstrate that the well-trained
PR-NF model can handle various initial conditions without re-training.

Fig. 5. The decay of loss function of training dataset (left panel) and the decay of KL divergence
of four test dataset (right panel). We monitor the KL divergence during the training process. The
consistency of decays between loss function and KL divergence demonstrates that the loss function
L defined in Eq. (3.5) involving the reversibility error is e↵ective to be regarded as a loss function
for normalzizing flow.

To illustrate the application of our method to high-dimensional problems, consider465

the ten-dimensional SDE466

(5.5) Xt = X0 +

Z t

0

Xsds +

Z t

0

KXsdWs with X0 2 D,467

This manuscript is for review purposes only.

16 M. YANG, P. WANG, D. DEL-CASTILLO-NEGRETE, Y. CAO, G. ZHANG

where DKL can be approximated by the Riemann sum over a uniform mesh or the459

mean value of log
⇣

pexact(x)
papprox(x)

⌘
over the training dataset X based on the exact solution460

in Eq. (5.2). We monitor the KL divergence for di↵erent distributions during the461

training process. The consistency of decays between loss function and KL divergence462

illustrates that the loss function L defined in Eq. (3.5) involving the reversibility error463

is e↵ective to be regarded as a loss function for normalzizing flow.464

Fig. 4. The accuracy performance of the well-trained PR-NF model for test dataset. The top
row shows the initial distributions of four dataset: � func, bar, sin2, and ricker. The corresponding
plots on the bottom row present the fitting between the exact density of Xt (red curve) and the
histogram (generated by PR-NF model) at t = 0.1. The results demonstrate that the well-trained
PR-NF model can handle various initial conditions without re-training.

Fig. 5. The decay of loss function of training dataset (left panel) and the decay of KL divergence
of four test dataset (right panel). We monitor the KL divergence during the training process. The
consistency of decays between loss function and KL divergence demonstrates that the loss function
L defined in Eq. (3.5) involving the reversibility error is e↵ective to be regarded as a loss function
for normalzizing flow.

To illustrate the application of our method to high-dimensional problems, consider465

the ten-dimensional SDE466

(5.5) Xt = X0 +

Z t

0

Xsds +

Z t

0

KXsdWs with X0 2 D,467

This manuscript is for review purposes only.

Decay of loss function during training Decay of KL divergence during testing

15

Hot tail generation of runaway electrons during thermal quench
• 2D Fokker-Planck for f as function of momentum, p, and pitch angle ξ

∂f
∂t

= −E
[
ξ
∂f
∂p

+
(1 − ξ2)

p
∂f
∂ξ

]
+

1
p2

∂

∂p

{
p2

[
CA

∂f
∂p

+ CF f
]
+

CB

p2
∂

∂ξ

[
(1 − ξ2)

∂f
∂ξ

]}

• Assume fast thermal quench with plasma parameters depending on final plasma
temperature Tf .

• Electric field from Ohm’s law with temperature dependent Spitzer resistivity
• Hot tail generation of runaway electrons studied by computing the evolution for an

initial Maxwellian at temperature T0 > Tf

• Training performed by solving stochastic equations

dp =

[
Eξ − γp

τ

(
1 − ξ2)− CF +

1
p2

∂

∂p

(
p2CA

)]
dt +

√
2CA dWp

dξ =

[
E
(
1 − ξ2

)

p
+

ξ
(
1 − ξ2

)

τγ
− 2ξ

CB

p2

]
dt +

√
2CB

p

√
1 − ξ2 dWξ

16

Surrogate model reproduces high-fidelity direct simulation

20 M. YANG, P. WANG, D. DEL-CASTILLO-NEGRETE, Y. CAO, G. ZHANG

Fig. 7. Final state of runaway electrons probability density function, f(✓, p, tmax), according

to the model in Eq. (5.7) with initial condition, f(✓, p, t0) in Eq. (5.8) with T̂0 = 10. The top row
compares the 1d marginal distributions for the pitch angle (left) and the momentum (right) computed
using the PR-NF and the MC methods. The inset in the the top plot on the right highlights, in
logarithmic scale, the bump in the distribution resulting from the acceleration of the hot tail. The
contour plots at the bottom compare the 2d distributions using a log10 scale. The local pointwise
di↵erences between PR-NF and MC methods are of the order 10�2. Such agreement between MC
and the PRNF methods is su�cient to ensure the accuracy of quantity of interest, for example, the
runaway electron production rate in Fig. 8.

the MC method of these ten cases of Maxwellian distribution is around CMC = 4000563

sec. The total running time of the PR-NF method consists of two parts, the o✏ine564

cost is around Co✏ine = 1354 sec and the online cost is around Conline = 12 sec.565

The PR-NF model is faster that the MC method, especially on the online cost. This566

e�ciency advantage is more valuable when we handle a large number of Maxwellian567

distributions.568

5.3. Passive scalar advection-di↵usion transport in a 3D chaotic flow.569

Understanding passive scalar transport is a problem of significant interest in fluid570

dynamics in general and environmental engineering, oceanography, and atmospheric571

sciences in particular. By passive we mean that the transported scalar exactly follows572

the given velocity field without modifying it.573

As a specific example to illustrate the application of the PR-NF method to this574

problem, we consider the ABC (Arnold-Beltrami-Childress) flow [6] which is a three-575

dimensional incompressible velocity field which is an exact solution of Euler’s equation.576

In Cartesian coordinates this velocity field has components v = (vx, vy, vz) with vx =577

A sin z + C cos y, vy = B sin x + A cos z and vz = C sin y + B cos x. For a wide range578

This manuscript is for review purposes only.

Normalizing flow surrogate model

20 M. YANG, P. WANG, D. DEL-CASTILLO-NEGRETE, Y. CAO, G. ZHANG

Fig. 7. Final state of runaway electrons probability density function, f(✓, p, tmax), according

to the model in Eq. (5.7) with initial condition, f(✓, p, t0) in Eq. (5.8) with T̂0 = 10. The top row
compares the 1d marginal distributions for the pitch angle (left) and the momentum (right) computed
using the PR-NF and the MC methods. The inset in the the top plot on the right highlights, in
logarithmic scale, the bump in the distribution resulting from the acceleration of the hot tail. The
contour plots at the bottom compare the 2d distributions using a log10 scale. The local pointwise
di↵erences between PR-NF and MC methods are of the order 10�2. Such agreement between MC
and the PRNF methods is su�cient to ensure the accuracy of quantity of interest, for example, the
runaway electron production rate in Fig. 8.

the MC method of these ten cases of Maxwellian distribution is around CMC = 4000563

sec. The total running time of the PR-NF method consists of two parts, the o✏ine564

cost is around Co✏ine = 1354 sec and the online cost is around Conline = 12 sec.565

The PR-NF model is faster that the MC method, especially on the online cost. This566

e�ciency advantage is more valuable when we handle a large number of Maxwellian567

distributions.568

5.3. Passive scalar advection-di↵usion transport in a 3D chaotic flow.569

Understanding passive scalar transport is a problem of significant interest in fluid570

dynamics in general and environmental engineering, oceanography, and atmospheric571

sciences in particular. By passive we mean that the transported scalar exactly follows572

the given velocity field without modifying it.573

As a specific example to illustrate the application of the PR-NF method to this574

problem, we consider the ABC (Arnold-Beltrami-Childress) flow [6] which is a three-575

dimensional incompressible velocity field which is an exact solution of Euler’s equation.576

In Cartesian coordinates this velocity field has components v = (vx, vy, vz) with vx =577

A sin z + C cos y, vy = B sin x + A cos z and vz = C sin y + B cos x. For a wide range578

This manuscript is for review purposes only.

Direct Monte Carlo computation

20 M. YANG, P. WANG, D. DEL-CASTILLO-NEGRETE, Y. CAO, G. ZHANG

Fig. 7. Final state of runaway electrons probability density function, f(✓, p, tmax), according

to the model in Eq. (5.7) with initial condition, f(✓, p, t0) in Eq. (5.8) with T̂0 = 10. The top row
compares the 1d marginal distributions for the pitch angle (left) and the momentum (right) computed
using the PR-NF and the MC methods. The inset in the the top plot on the right highlights, in
logarithmic scale, the bump in the distribution resulting from the acceleration of the hot tail. The
contour plots at the bottom compare the 2d distributions using a log10 scale. The local pointwise
di↵erences between PR-NF and MC methods are of the order 10�2. Such agreement between MC
and the PRNF methods is su�cient to ensure the accuracy of quantity of interest, for example, the
runaway electron production rate in Fig. 8.

the MC method of these ten cases of Maxwellian distribution is around CMC = 4000563

sec. The total running time of the PR-NF method consists of two parts, the o✏ine564

cost is around Co✏ine = 1354 sec and the online cost is around Conline = 12 sec.565

The PR-NF model is faster that the MC method, especially on the online cost. This566

e�ciency advantage is more valuable when we handle a large number of Maxwellian567

distributions.568

5.3. Passive scalar advection-di↵usion transport in a 3D chaotic flow.569

Understanding passive scalar transport is a problem of significant interest in fluid570

dynamics in general and environmental engineering, oceanography, and atmospheric571

sciences in particular. By passive we mean that the transported scalar exactly follows572

the given velocity field without modifying it.573

As a specific example to illustrate the application of the PR-NF method to this574

problem, we consider the ABC (Arnold-Beltrami-Childress) flow [6] which is a three-575

dimensional incompressible velocity field which is an exact solution of Euler’s equation.576

In Cartesian coordinates this velocity field has components v = (vx, vy, vz) with vx =577

A sin z + C cos y, vy = B sin x + A cos z and vz = C sin y + B cos x. For a wide range578

This manuscript is for review purposes only.

Pitch angle distribution

20 M. YANG, P. WANG, D. DEL-CASTILLO-NEGRETE, Y. CAO, G. ZHANG

Fig. 7. Final state of runaway electrons probability density function, f(✓, p, tmax), according

to the model in Eq. (5.7) with initial condition, f(✓, p, t0) in Eq. (5.8) with T̂0 = 10. The top row
compares the 1d marginal distributions for the pitch angle (left) and the momentum (right) computed
using the PR-NF and the MC methods. The inset in the the top plot on the right highlights, in
logarithmic scale, the bump in the distribution resulting from the acceleration of the hot tail. The
contour plots at the bottom compare the 2d distributions using a log10 scale. The local pointwise
di↵erences between PR-NF and MC methods are of the order 10�2. Such agreement between MC
and the PRNF methods is su�cient to ensure the accuracy of quantity of interest, for example, the
runaway electron production rate in Fig. 8.

the MC method of these ten cases of Maxwellian distribution is around CMC = 4000563

sec. The total running time of the PR-NF method consists of two parts, the o✏ine564

cost is around Co✏ine = 1354 sec and the online cost is around Conline = 12 sec.565

The PR-NF model is faster that the MC method, especially on the online cost. This566

e�ciency advantage is more valuable when we handle a large number of Maxwellian567

distributions.568

5.3. Passive scalar advection-di↵usion transport in a 3D chaotic flow.569

Understanding passive scalar transport is a problem of significant interest in fluid570

dynamics in general and environmental engineering, oceanography, and atmospheric571

sciences in particular. By passive we mean that the transported scalar exactly follows572

the given velocity field without modifying it.573

As a specific example to illustrate the application of the PR-NF method to this574

problem, we consider the ABC (Arnold-Beltrami-Childress) flow [6] which is a three-575

dimensional incompressible velocity field which is an exact solution of Euler’s equation.576

In Cartesian coordinates this velocity field has components v = (vx, vy, vz) with vx =577

A sin z + C cos y, vy = B sin x + A cos z and vz = C sin y + B cos x. For a wide range578

This manuscript is for review purposes only.

Momentum distribution

17

Surrogate model also reproduces expensive high-fidelity simula-
tions of hot-tail RE production rate as function of temperature

• Exploration of the hot-tail generation of REs
requires the solution of this problem for different
initial conditions.

• Production Rate: nRE =
∫ 1
−1

∫ pmax

p∗ ftmax(p, ξ)dpdξ,
for different values of T0, where p∗ = 1.75.

• The total running time of the surrogate model
consists of two parts, the offline cost is around
Coffline = 1354 sec and the online cost is around
Conline = 12 sec.

• The total running time of the MC method is around
CMC = 4000 sec. MC method depends on tmax,
temporal step size, ...

18

Transport in the presence of a 3D chaotic flow
• To test the surrogate model in the case of complex 3D transport we consider

∂f (t , x)
∂t

+ v · ∇f (t , x) = D∇2f (t , x),

vx = [A sin z + C cos y], vy = [B sin x + A cos z], vz = [C sin y + B cos x] .

• This ABC velocity field is known to exhibit very complex 3D chaotic trajectories
• Problem of interest to fluid models of RE

Three-dimensional flow visualization via streamsurfaces of the closest first integral 9

(d)

H0 2 4 6
0

2

4

6

x

y

1

2

3

(e)

H0 2 4 6
0

2

4

6

x

z

2

4

6

8 (f)

H
0 2 4 6

0

2

4

6

y

z

0.26

0.28

0.3

0.32

0.34

Figure 3. Analysis of the non-integrable ABC flow using a computational grid of 1003 points
and 9 170 Fourier modes. Level sets of the approximate first integral at z = 0 (a and d), y = 0 (b
and e) and x = 0 (c and f). The first row is constructed from the eigenvector of A corresponding
to the smallest eigenvalue, whereas the second row is produced using the SVD of C. The overlaid
Poincaré map (black dots) on each section is based on a uniform grid of 20⇥20 initial conditions.

With this modification to the SVD-based solution, the results from the two approaches
for the non-integrable ABC flow are presented in Fig. 3 on the z = 0, y = 0 and
x = 0 planes. We observe that the differences between the eigenvector-based and singular-
vector-based computations are marginal, indicating that the larger condition number of A
does not affect the results. Furthermore, we use the same three planes as Poincaré sections
to integrate trajectories up to an arclength of 104 from a uniform grid of 20 ⇥ 20 initial
conditions on each section. We observe a very good agreement between the predicted
structures and the intersections of the KAM surfaces with each of these sections. This
is highlighted perhaps even better by the reconstructed KAM surfaces as approximate
streamsurfaces in Fig. 4, which are to be contrasted with the �2-based structures in
Appendix A. Since the ABC flow is a Beltrami flow, its velocity v is parallel to the
vorticity ! = r ⇥ v (in fact, v = !); consequently, the approximate-first-integral-
based tori we have constructed are also VSFs. This illustrates that our algorithm can
identify VSFs in flows where the methodology of Yang & Pullin (2010) is inapplicable.
Indeed, as already noted, the non-integrable ABC flow has chaotic streamlines and, thus,
no symmetry assumptions regarding these streamlines can be utilized to accelerate the
convergence rate for the optimization technique presented in Yang & Pullin (2010). Even
if this rate was irrelevant, however, expanding the known velocity field in a Fourier series
would result in an optimization problem with many (numerically) zero eigenvalues and,
thus, infinitely many possible minimizers.

Upon taking a closer look at the results of Fig. 3, we notice that the reconstructed
level sets attain their values in a longer range (i.e., [0, 3.5]) for the larger KAM surfaces,
whereas, in the vicinity of the smaller structures, they are confined to a narrow band (i.e.,
[0.25, 0.35]). Here the adjectives larger and smaller are used to refer to either the area
(Fig. 3) or the volume (Fig. 4) these families enclose. This is a type of overfitting that
we would like to mitigate. One way to achieve this is by considering a slightly different

x

y

Three-dimensional flow visualization via streamsurfaces of the closest first integral 9

(d)

H0 2 4 6
0

2

4

6

x

y

1

2

3

(e)

H0 2 4 6
0

2

4

6

x

z

2

4

6

8 (f)

H
0 2 4 6

0

2

4

6

y

z

0.26

0.28

0.3

0.32

0.34

Figure 3. Analysis of the non-integrable ABC flow using a computational grid of 1003 points
and 9 170 Fourier modes. Level sets of the approximate first integral at z = 0 (a and d), y = 0 (b
and e) and x = 0 (c and f). The first row is constructed from the eigenvector of A corresponding
to the smallest eigenvalue, whereas the second row is produced using the SVD of C. The overlaid
Poincaré map (black dots) on each section is based on a uniform grid of 20⇥20 initial conditions.

With this modification to the SVD-based solution, the results from the two approaches
for the non-integrable ABC flow are presented in Fig. 3 on the z = 0, y = 0 and
x = 0 planes. We observe that the differences between the eigenvector-based and singular-
vector-based computations are marginal, indicating that the larger condition number of A
does not affect the results. Furthermore, we use the same three planes as Poincaré sections
to integrate trajectories up to an arclength of 104 from a uniform grid of 20 ⇥ 20 initial
conditions on each section. We observe a very good agreement between the predicted
structures and the intersections of the KAM surfaces with each of these sections. This
is highlighted perhaps even better by the reconstructed KAM surfaces as approximate
streamsurfaces in Fig. 4, which are to be contrasted with the �2-based structures in
Appendix A. Since the ABC flow is a Beltrami flow, its velocity v is parallel to the
vorticity ! = r ⇥ v (in fact, v = !); consequently, the approximate-first-integral-
based tori we have constructed are also VSFs. This illustrates that our algorithm can
identify VSFs in flows where the methodology of Yang & Pullin (2010) is inapplicable.
Indeed, as already noted, the non-integrable ABC flow has chaotic streamlines and, thus,
no symmetry assumptions regarding these streamlines can be utilized to accelerate the
convergence rate for the optimization technique presented in Yang & Pullin (2010). Even
if this rate was irrelevant, however, expanding the known velocity field in a Fourier series
would result in an optimization problem with many (numerically) zero eigenvalues and,
thus, infinitely many possible minimizers.

Upon taking a closer look at the results of Fig. 3, we notice that the reconstructed
level sets attain their values in a longer range (i.e., [0, 3.5]) for the larger KAM surfaces,
whereas, in the vicinity of the smaller structures, they are confined to a narrow band (i.e.,
[0.25, 0.35]). Here the adjectives larger and smaller are used to refer to either the area
(Fig. 3) or the volume (Fig. 4) these families enclose. This is a type of overfitting that
we would like to mitigate. One way to achieve this is by considering a slightly different

y

z

x

Three-dimensional flow visualization via streamsurfaces of the closest first integral 9

(d)

H0 2 4 6
0

2

4

6

x

y

1

2

3

(e)

H0 2 4 6
0

2

4

6

x

z

2

4

6

8 (f)

H
0 2 4 6

0

2

4

6

y

z

0.26

0.28

0.3

0.32

0.34

Figure 3. Analysis of the non-integrable ABC flow using a computational grid of 1003 points
and 9 170 Fourier modes. Level sets of the approximate first integral at z = 0 (a and d), y = 0 (b
and e) and x = 0 (c and f). The first row is constructed from the eigenvector of A corresponding
to the smallest eigenvalue, whereas the second row is produced using the SVD of C. The overlaid
Poincaré map (black dots) on each section is based on a uniform grid of 20⇥20 initial conditions.

With this modification to the SVD-based solution, the results from the two approaches
for the non-integrable ABC flow are presented in Fig. 3 on the z = 0, y = 0 and
x = 0 planes. We observe that the differences between the eigenvector-based and singular-
vector-based computations are marginal, indicating that the larger condition number of A
does not affect the results. Furthermore, we use the same three planes as Poincaré sections
to integrate trajectories up to an arclength of 104 from a uniform grid of 20 ⇥ 20 initial
conditions on each section. We observe a very good agreement between the predicted
structures and the intersections of the KAM surfaces with each of these sections. This
is highlighted perhaps even better by the reconstructed KAM surfaces as approximate
streamsurfaces in Fig. 4, which are to be contrasted with the �2-based structures in
Appendix A. Since the ABC flow is a Beltrami flow, its velocity v is parallel to the
vorticity ! = r ⇥ v (in fact, v = !); consequently, the approximate-first-integral-
based tori we have constructed are also VSFs. This illustrates that our algorithm can
identify VSFs in flows where the methodology of Yang & Pullin (2010) is inapplicable.
Indeed, as already noted, the non-integrable ABC flow has chaotic streamlines and, thus,
no symmetry assumptions regarding these streamlines can be utilized to accelerate the
convergence rate for the optimization technique presented in Yang & Pullin (2010). Even
if this rate was irrelevant, however, expanding the known velocity field in a Fourier series
would result in an optimization problem with many (numerically) zero eigenvalues and,
thus, infinitely many possible minimizers.

Upon taking a closer look at the results of Fig. 3, we notice that the reconstructed
level sets attain their values in a longer range (i.e., [0, 3.5]) for the larger KAM surfaces,
whereas, in the vicinity of the smaller structures, they are confined to a narrow band (i.e.,
[0.25, 0.35]). Here the adjectives larger and smaller are used to refer to either the area
(Fig. 3) or the volume (Fig. 4) these families enclose. This is a type of overfitting that
we would like to mitigate. One way to achieve this is by considering a slightly different

z

The proposed surrogate model reproduces the high-fidelity time-
consuming MC simulation

19

Poincare plots of chaotic ABC flow

[Adapted from Katsanoulis et al., J. Fluid Mech. (2023), vol. 954, A28]

y = 0x = 0z = 0
Mixing in the ABC flow

19

Surrogate model reproduces high-fidelity direct simulations22 M. YANG, P. WANG, D. DEL-CASTILLO-NEGRETE, Y. CAO, G. ZHANG

of the form

(5.11) f(x, y, z, t0) = H(x, y, z) exp

"
�
✓

x � xc

�x

◆2

�
✓

y � yc

�y

◆2

�
✓

z � zc

�z

◆2
#
,

modeling, for example, a Gaussian-shaped cloud of a pollutant, with �x = ⇡/3, �x =
⇡/5, �x = ⇡/4, localized at (xc, yc, zc) 2 D, where H(x, y, z) = 1 if (x, y, z) 2 D and
H(x, y, z) = 0 otherwise. Figure 9 shows a good agreement between the final pdf of the
passive scalar, f(x, y, z, tmax), computed with the PR-NF surrogate model and the pdf
computed using direct Monte Carlo simulation for the case (xc, yc, zc) = (⇡/2,⇡,⇡).
Since both methods are particle-based, once the discrete particle data have been
obtained, the corresponding pdfs are constructed using a standard Gaussian-kernel
estimation. To ease the comparison of these 3d pdfs, Fig. 9 shows the 1d marginal
distributions, e.g., g(x) =

R
dy
R

dzf(x, y, z, tmax), and the 2d marginal distributions,
e.g., g(x, y) =

R
dzf(x, y, z, tmax). The mixing due to the combination of chaotic

advection and di↵usion rapidly displaces the scalar outside the D domain.
As a second application we consider a “target” transport problem of interest, for

example, to environmental fluid dynamics. The problem consists of finding the concen-
tration of the scalar in a target domain, T = [xmin, xmax] ⇥ [�1,1] ⇥ [zmin, zmax],
resulting from the transport of a concentrated pollutant cloud released inside the
D = [0, 2⇡] ⇥ [0, 2⇡] ⇥ [0, 2⇡] domain. The initial cloud will be described using the
Gaussian model in Eq. (5.11) with �x = ⇡/3, �x = ⇡/5, �x = ⇡/4. The y-coordinate
of the cloud will be fixed at yc = ⇡ and the goal is to compute the total scalar density
in T as function of the (xc, zc) coordinates of the center of the initial cloud in D. The
quantity of interest in this case is

(5.12) nT (xc, zc) =

Z xmax

xmin

Z 1

�1

Z zmax

zmin

f(x, y, z, tmax)dxdydz ,

and for the calculation presented here we will use xmin = 0, xmax = ⇡, zmin = 2⇡, and
zmax = 3⇡.

To perform this calculation a Nx⇥Nz uniform grid is constructed in the (xc, zc) 2
[0, 2⇡] ⇥ [0, 2⇡] space and the NxNz = Nic grid nodes are used to define the ensem-
ble {xi

c, z
i
c}Nic

i=1. For each element of the ensemble, the standard direct Monte Carlo
approach requires the solution of the system of SDE in Eq. (5.10) for Ntest parti-
cles with initial conditions sampled from the Gaussian cloud in Eq. (5.11) centered
at (xi

c, yc = ⇡, zi
c). In total, this approach requires NicNtest solutions of the SDEs.

On the other hand, the PR-NF method only requires to solve the SDE in Eq. (5.10)
for Ntrain initial conditions and, once the training is done, the computation of the
NicNtest initial conditions can be done by simply evaluating the surrogate neural
network model.

In the case discussed here we use Nx = Nz = 21, and Ntest = 20000. With the
Monte Carlo method this requires solving 8.82 ⇥ 106 SDEs. For tfinal = 2, with step
size �t = 0.001, the total run-time to produce the results reported in Fig. 10 was
CMC = 5320 sec. On the other hand, the training of the PR-NF neural network, like
in the previous calculation, is done using Ntrain = 30000, Nhidden = 1 hidden layer
with Nneuron = 512 neurons, and Nepoch = 20000. For these parameters, the o✏ine
cost of the training is around Co✏ine = 2200 sec. But, once the training is done, the
evaluation of the di↵erent initial conditions has minimal cost. In particular, the total
PR-NF run-time to produce the results reported in Fig. 10 is of the order Conline = 50
sec. The contour plots of nT shown in Fig. 10 provided evidence that the much more

The proposed surrogate model reproduces the high-fidelity time-
consuming MC simulation

19

The proposed surrogate model reproduces the high-fidelity time-
consuming MC simulation

19

The proposed surrogate model reproduces the high-fidelity time-
consuming MC simulation

19

The proposed surrogate model reproduces the high-fidelity time-
consuming MC simulation

19

20

Surrogate model reproduces high-fidelity direct simulations

(xc , yc , zc)

Initial distribution

Target domain

22 M. YANG, P. WANG, D. DEL-CASTILLO-NEGRETE, Y. CAO, G. ZHANG

of the form

(5.11) f(x, y, z, t0) = H(x, y, z) exp

"
�
✓

x � xc

�x

◆2

�
✓

y � yc

�y

◆2

�
✓

z � zc

�z

◆2
#
,

modeling, for example, a Gaussian-shaped cloud of a pollutant, with �x = ⇡/3, �x =
⇡/5, �x = ⇡/4, localized at (xc, yc, zc) 2 D, where H(x, y, z) = 1 if (x, y, z) 2 D and
H(x, y, z) = 0 otherwise. Figure 9 shows a good agreement between the final pdf of the
passive scalar, f(x, y, z, tmax), computed with the PR-NF surrogate model and the pdf
computed using direct Monte Carlo simulation for the case (xc, yc, zc) = (⇡/2,⇡,⇡).
Since both methods are particle-based, once the discrete particle data have been
obtained, the corresponding pdfs are constructed using a standard Gaussian-kernel
estimation. To ease the comparison of these 3d pdfs, Fig. 9 shows the 1d marginal
distributions, e.g., g(x) =

R
dy
R

dzf(x, y, z, tmax), and the 2d marginal distributions,
e.g., g(x, y) =

R
dzf(x, y, z, tmax). The mixing due to the combination of chaotic

advection and di↵usion rapidly displaces the scalar outside the D domain.
As a second application we consider a “target” transport problem of interest, for

example, to environmental fluid dynamics. The problem consists of finding the concen-
tration of the scalar in a target domain, T = [xmin, xmax] ⇥ [�1,1] ⇥ [zmin, zmax],
resulting from the transport of a concentrated pollutant cloud released inside the
D = [0, 2⇡] ⇥ [0, 2⇡] ⇥ [0, 2⇡] domain. The initial cloud will be described using the
Gaussian model in Eq. (5.11) with �x = ⇡/3, �x = ⇡/5, �x = ⇡/4. The y-coordinate
of the cloud will be fixed at yc = ⇡ and the goal is to compute the total scalar density
in T as function of the (xc, zc) coordinates of the center of the initial cloud in D. The
quantity of interest in this case is

(5.12) nT (xc, zc) =

Z xmax

xmin

Z 1

�1

Z zmax

zmin

f(x, y, z, tmax)dxdydz ,

and for the calculation presented here we will use xmin = 0, xmax = ⇡, zmin = 2⇡, and
zmax = 3⇡.

To perform this calculation a Nx⇥Nz uniform grid is constructed in the (xc, zc) 2
[0, 2⇡] ⇥ [0, 2⇡] space and the NxNz = Nic grid nodes are used to define the ensem-
ble {xi

c, z
i
c}Nic

i=1. For each element of the ensemble, the standard direct Monte Carlo
approach requires the solution of the system of SDE in Eq. (5.10) for Ntest parti-
cles with initial conditions sampled from the Gaussian cloud in Eq. (5.11) centered
at (xi

c, yc = ⇡, zi
c). In total, this approach requires NicNtest solutions of the SDEs.

On the other hand, the PR-NF method only requires to solve the SDE in Eq. (5.10)
for Ntrain initial conditions and, once the training is done, the computation of the
NicNtest initial conditions can be done by simply evaluating the surrogate neural
network model.

In the case discussed here we use Nx = Nz = 21, and Ntest = 20000. With the
Monte Carlo method this requires solving 8.82 ⇥ 106 SDEs. For tfinal = 2, with step
size �t = 0.001, the total run-time to produce the results reported in Fig. 10 was
CMC = 5320 sec. On the other hand, the training of the PR-NF neural network, like
in the previous calculation, is done using Ntrain = 30000, Nhidden = 1 hidden layer
with Nneuron = 512 neurons, and Nepoch = 20000. For these parameters, the o✏ine
cost of the training is around Co✏ine = 2200 sec. But, once the training is done, the
evaluation of the di↵erent initial conditions has minimal cost. In particular, the total
PR-NF run-time to produce the results reported in Fig. 10 is of the order Conline = 50
sec. The contour plots of nT shown in Fig. 10 provided evidence that the much more

22 M. YANG, P. WANG, D. DEL-CASTILLO-NEGRETE, Y. CAO, G. ZHANG

of the form

(5.11) f(x, y, z, t0) = H(x, y, z) exp

"
�
✓

x � xc

�x

◆2

�
✓

y � yc

�y

◆2

�
✓

z � zc

�z

◆2
#
,

modeling, for example, a Gaussian-shaped cloud of a pollutant, with �x = ⇡/3, �x =
⇡/5, �x = ⇡/4, localized at (xc, yc, zc) 2 D, where H(x, y, z) = 1 if (x, y, z) 2 D and
H(x, y, z) = 0 otherwise. Figure 9 shows a good agreement between the final pdf of the
passive scalar, f(x, y, z, tmax), computed with the PR-NF surrogate model and the pdf
computed using direct Monte Carlo simulation for the case (xc, yc, zc) = (⇡/2,⇡,⇡).
Since both methods are particle-based, once the discrete particle data have been
obtained, the corresponding pdfs are constructed using a standard Gaussian-kernel
estimation. To ease the comparison of these 3d pdfs, Fig. 9 shows the 1d marginal
distributions, e.g., g(x) =

R
dy
R

dzf(x, y, z, tmax), and the 2d marginal distributions,
e.g., g(x, y) =

R
dzf(x, y, z, tmax). The mixing due to the combination of chaotic

advection and di↵usion rapidly displaces the scalar outside the D domain.
As a second application we consider a “target” transport problem of interest, for

example, to environmental fluid dynamics. The problem consists of finding the concen-
tration of the scalar in a target domain, T = [xmin, xmax] ⇥ [�1,1] ⇥ [zmin, zmax],
resulting from the transport of a concentrated pollutant cloud released inside the
D = [0, 2⇡] ⇥ [0, 2⇡] ⇥ [0, 2⇡] domain. The initial cloud will be described using the
Gaussian model in Eq. (5.11) with �x = ⇡/3, �x = ⇡/5, �x = ⇡/4. The y-coordinate
of the cloud will be fixed at yc = ⇡ and the goal is to compute the total scalar density
in T as function of the (xc, zc) coordinates of the center of the initial cloud in D. The
quantity of interest in this case is

(5.12) nT (xc, zc) =

Z xmax

xmin

Z 1

�1

Z zmax

zmin

f(x, y, z, tmax)dxdydz ,

and for the calculation presented here we will use xmin = 0, xmax = ⇡, zmin = 2⇡, and
zmax = 3⇡.

To perform this calculation a Nx⇥Nz uniform grid is constructed in the (xc, zc) 2
[0, 2⇡] ⇥ [0, 2⇡] space and the NxNz = Nic grid nodes are used to define the ensem-
ble {xi

c, z
i
c}Nic

i=1. For each element of the ensemble, the standard direct Monte Carlo
approach requires the solution of the system of SDE in Eq. (5.10) for Ntest parti-
cles with initial conditions sampled from the Gaussian cloud in Eq. (5.11) centered
at (xi

c, yc = ⇡, zi
c). In total, this approach requires NicNtest solutions of the SDEs.

On the other hand, the PR-NF method only requires to solve the SDE in Eq. (5.10)
for Ntrain initial conditions and, once the training is done, the computation of the
NicNtest initial conditions can be done by simply evaluating the surrogate neural
network model.

In the case discussed here we use Nx = Nz = 21, and Ntest = 20000. With the
Monte Carlo method this requires solving 8.82 ⇥ 106 SDEs. For tfinal = 2, with step
size �t = 0.001, the total run-time to produce the results reported in Fig. 10 was
CMC = 5320 sec. On the other hand, the training of the PR-NF neural network, like
in the previous calculation, is done using Ntrain = 30000, Nhidden = 1 hidden layer
with Nneuron = 512 neurons, and Nepoch = 20000. For these parameters, the o✏ine
cost of the training is around Co✏ine = 2200 sec. But, once the training is done, the
evaluation of the di↵erent initial conditions has minimal cost. In particular, the total
PR-NF run-time to produce the results reported in Fig. 10 is of the order Conline = 50
sec. The contour plots of nT shown in Fig. 10 provided evidence that the much more

24 M. YANG, P. WANG, D. DEL-CASTILLO-NEGRETE, Y. CAO, G. ZHANG

Fig. 10. Contour plots of quantity of interest n⌧ (xc, zc) in Eq. (5.12) computed using the
PR-NF surrogate model (left panel) and the direct MC method (right panel). For a given (xc, zc),
n⌧ (xc, zc) denotes the total density of the scalar in the target region T (x, y, z) = [0,⇡]⇥ [�1,1]⇥
[2⇡, 3⇡] resulting from the transport of an initial Gaussian cloud, Eq. (5.11), centered at (xc, yc =
⇡, zc) 2 D(x, y, z) = [0, 2⇡]⇥ [0, 2⇡]⇥ [0, 2⇡]. The agreement of the two calculation provides evidence
of the accuracy of the significantly faster PR-NF method (absolute error between two methods in n⌧

is of the order 10�2). The results of PR-NF (left panel) is su�cient to simulate the profile of n⌧ .
Moreover, the online cost of PR-NF method is about 100 times faster than MC method.

tackle more complex problems. For example, the two-dimensional runaway electron
model discussed in Section 5.2 is a reduced 2-D plasma transport model. Going
beyond this simplified description, we envision extending the capabilities of the PR-
NF model to encompass the six-dimensional full-orbit transport model, which poses
significant challenges when employing PDE-based methods. Additionally, we aim to
explore the complete dynamics of stochastic di↵erential equations, not limited to a
single time instant.

Acknowledgement. This material is based upon work supported by the U.S.
Department of Energy, O�ce of Science, O�ce of Advanced Scientific Computing
Research, Applied Mathematics program under the contract ERKJ387, O�ce of Fu-
sion Energy Science, and Scientific Discovery through Advanced Computing (SciDAC)
program, at the Oak Ridge National Laboratory, which is operated by UT-Battelle,
LLC, for the U.S. Department of Energy under Contract DE-AC05-00OR22725.

REFERENCES

[1] G.-J. Both and R. Kusters, Temporal normalizing flows, arXiv preprint arXiv:1912.09092,
(2019).

[2] B. N. Breizman, P. Aleynikov, E. M. Hollmann, and M. Lehnen, Physics of runaway
electrons in tokamaks, Nuclear Fusion, 59 (2019), p. 083001.

[3] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A.
Bharath, Generative adversarial networks: An overviewa, IEEE signal processing maga-
zine, 35 (2018), pp. 53–65.

[4] D. Del-Castillo-Negrete, M. Yang, M. Beidler, and G. Zhang, Generation and mitiga-
tion of runaway electrons: spatio-temporal e↵ects in dynamic scenarios, tech. report, Oak
Ridge National Lab.(ORNL), Oak Ridge, TN (United States), 2021.

[5] L. Dinh, J. Sohl-Dickstein, and S. Bengio, Density estimation using real nvp, arXiv preprint
arXiv:1605.08803, (2016).

[6] T. Dombre, U. Frisch, J. M. Greene, M. Hénon, A. Mehr, and A. M. Soward, Chaotic
streamlines in the abc flows, Journal of Fluid Mechanics, 167 (1986), pp. 353–391.

[7] L. Feng, Xiaodong Zeng and T. Zhou, Solving time dependent fokker-planck equations via
temporal normalizing flow, Communications in Computational Physics, 32 (2022), pp. 401–

Surrogate model

24 M. YANG, P. WANG, D. DEL-CASTILLO-NEGRETE, Y. CAO, G. ZHANG

Fig. 10. Contour plots of quantity of interest n⌧ (xc, zc) in Eq. (5.12) computed using the
PR-NF surrogate model (left panel) and the direct MC method (right panel). For a given (xc, zc),
n⌧ (xc, zc) denotes the total density of the scalar in the target region T (x, y, z) = [0,⇡]⇥ [�1,1]⇥
[2⇡, 3⇡] resulting from the transport of an initial Gaussian cloud, Eq. (5.11), centered at (xc, yc =
⇡, zc) 2 D(x, y, z) = [0, 2⇡]⇥ [0, 2⇡]⇥ [0, 2⇡]. The agreement of the two calculation provides evidence
of the accuracy of the significantly faster PR-NF method (absolute error between two methods in n⌧

is of the order 10�2). The results of PR-NF (left panel) is su�cient to simulate the profile of n⌧ .
Moreover, the online cost of PR-NF method is about 100 times faster than MC method.

tackle more complex problems. For example, the two-dimensional runaway electron
model discussed in Section 5.2 is a reduced 2-D plasma transport model. Going
beyond this simplified description, we envision extending the capabilities of the PR-
NF model to encompass the six-dimensional full-orbit transport model, which poses
significant challenges when employing PDE-based methods. Additionally, we aim to
explore the complete dynamics of stochastic di↵erential equations, not limited to a
single time instant.

Acknowledgement. This material is based upon work supported by the U.S.
Department of Energy, O�ce of Science, O�ce of Advanced Scientific Computing
Research, Applied Mathematics program under the contract ERKJ387, O�ce of Fu-
sion Energy Science, and Scientific Discovery through Advanced Computing (SciDAC)
program, at the Oak Ridge National Laboratory, which is operated by UT-Battelle,
LLC, for the U.S. Department of Energy under Contract DE-AC05-00OR22725.

REFERENCES

[1] G.-J. Both and R. Kusters, Temporal normalizing flows, arXiv preprint arXiv:1912.09092,
(2019).

[2] B. N. Breizman, P. Aleynikov, E. M. Hollmann, and M. Lehnen, Physics of runaway
electrons in tokamaks, Nuclear Fusion, 59 (2019), p. 083001.

[3] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A.
Bharath, Generative adversarial networks: An overviewa, IEEE signal processing maga-
zine, 35 (2018), pp. 53–65.

[4] D. Del-Castillo-Negrete, M. Yang, M. Beidler, and G. Zhang, Generation and mitiga-
tion of runaway electrons: spatio-temporal e↵ects in dynamic scenarios, tech. report, Oak
Ridge National Lab.(ORNL), Oak Ridge, TN (United States), 2021.

[5] L. Dinh, J. Sohl-Dickstein, and S. Bengio, Density estimation using real nvp, arXiv preprint
arXiv:1605.08803, (2016).

[6] T. Dombre, U. Frisch, J. M. Greene, M. Hénon, A. Mehr, and A. M. Soward, Chaotic
streamlines in the abc flows, Journal of Fluid Mechanics, 167 (1986), pp. 353–391.

[7] L. Feng, Xiaodong Zeng and T. Zhou, Solving time dependent fokker-planck equations via
temporal normalizing flow, Communications in Computational Physics, 32 (2022), pp. 401–

Direct Monte Carlo

Target density

Initial distribution

Running time: CMC = 5320 sec. Surrogate model Coffline = 2200 sec, and Conline = 50 sec.
21

Summary
• We proposed an accurate and efficient surrogate method for the solution of initial

value problems of the Fokker-Planck equation with arbitrary initial conditions.
• The method is based on normalizing flows, a powerful machine learning

generative model.
• We presented a 1D benchmark/convergence example, and applications to hot-tail

generation of runaway electrons in 2D, and transports in 3D chaotic flows.
• The surrogate model reproduces the time-consuming high-fidelity Monte-Carlo

simulations.
• Further details can be found in

M. Yang, P. Wang, D. del-Castillo-Negrete, Y. Cao and G. Zhang,
“A pseudo-reversible normalizing flow for stochastic dynamical systems with
various initial distributions.” Submitted to SIAM Journal of Scientific Computing
(2023). https://arxiv.org/pdf/2306.05580.pdf

22

