Progress on the physics basis of the ITER DMS (and more)

PPPL Workshop on Theory and Simulation of Disruptions

Michael Lehnen

for the ITER DMS Task Force & Design Team

ITER Organization, Route de Vinon-sur-Verdon – CS 90 046, 13067 St Paul Lez Durance Cedex – France

ITER is the Nuclear Facility INB no. 174. This presentation explores physics processes during the plasma operation of the tokamak when disruptions take place; nevertheless the nuclear operator is not constrained by the results presented here. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

The JET SPI experiments have been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

iter china eu india japan korea russia usa

M. Lehnen – TSDW July 2023 ©2023, ITER Organization

IDM UID: 9C5YH6 Page 1

Contributors

JET SPI team

S. Jachmich, U. Sheikh, C. Reux, O. Ficker, L.R. Baylor, G. Bodner, D. Bonfiglio, D. Craven,

N. Eidietis, S. Gerasimov, Z. Huang, J.H. Kim, M. Kong, D. Kos, E. Matveeva, E. Nardon,

C. Paz-Soldan, A. Peacock, L. Piron, D. Shiraki, S. Silburn, J. Wilson, and JET contributors

JET SPI experiments are performed in collaboration between EUROfusion and the ITER Organization

DMS Task Force

E. Nardon, A. Matsuyama, J. Artola, V. Bandaru, H. Bergström, T. Fülöp, P. Heinrich, J. Herfindal, M. Hoelzl, D. Hu, C. Kim, A. Lvovskiy, S.J. Lee, B. Lyons, Y.S. Na, G. Papp, I. Pusztai, K. Särkimäki, W. Tang, O. Vallhagen

DMS Design Team & TF technology group

U. Kruezi, M. Dibon, M. Kochergin, L.R. Baylor, D. Dunai, T.E. Gebhart, A. Horvat, F. Millet, M. Roveta, I.V. Vinyar, S. Zoletnik

ITER

Y. Gribov, L. Chen, A. Loarte, R. Pitts

iter china eu india japan korea russia usa

Artificial Intelligence

Present pellet size is 28.5 mm, there may be reasons to reduce their size

Q: What are the optimum pellet sizes for shattered pellet injection in ITER for injections before the thermal quench, after the thermal quench, and into runaway electron beams? What is the justification for the choice of these optimum pellet sizes?

ChatGPT:

As of my knowledge cutoff in September 2021, I don't have specific information on the optimum pellet sizes for shattered pellet injection in ITER for different scenarios [...]

The optimum pellet size for shattered pellet injection depends on several factors, including plasma parameters, magnetic field strength, plasma density, and the desired effect on the plasma. <mark>Researchers and scientists perform extensive studies, simulations, and experiments to determine the most effective pellet sizes for different scenarios.</mark>

To obtain the most up-to-date and accurate information regarding optimum pellet sizes for shattered pellet injection in ITER, I recommend referring to scientific publications, research papers, and the latest experimental data from the ITER project. Additionally, contacting experts or organizations involved in the ITER project, such as the ITER Organization or associated research institutions, would provide the most current information on this specific topic.

iter china eu india japan korea russia usa

Outline

Impact of ITER re-baselining on the strategy for disruptions Present DMS design & technology development Experiment & Modelling efforts of the DMS Task Force

DMS design status

DMS Final Design Review Meeting rescheduled to March 2024

UP #02, #08, #14 (post-TQ for CQ mitigation): each 1 injector

EP #02, #08, #17 (pre-TQ & RE mitigation): total of 24 injectors

DMS design status

Present design for port plug EP#02

DMS Technology Task Force - Activities

Cryostat and cold head to perform fundamental studies (CEA-Grenoble, France)

> gas flow modelling for propellant suppressor (CASPUS, UK)

OPD front end optics (Fusion Instruments, Hungary)

pellet impacting target for trajectory measurements (ORNL, US)

Simulation of pellet fragmentation validated against experiments (EMI-Fraunhofer, Germany)

M. Lehnen – TSDW July 2023 ©2023, ITER Organization

ter china eu india japan korea russia usa

DMS technology development

- ITER DMS technology meeting held 8-9 February 2023 at IO
 - Pellet Formation & Launching
 - Propellant Gas Suppression
 - Optical Pellet Diagnostic
 - Pellet flight accuracy
 - Shattering
 - Alignment diagnostic
 - Alternative Techniques
- Contact S. Jachmich for further information

New ITER Baseline

- Three scenarios were explored of which one was selected by IO and proposed to the ITER Council
- This new scenario will be further elaborated and presented to the September STAC and at the November Council meeting
- Main features of the new scenario:
 - Augmented First Plasma Phase with inertially cooled first wall and plasma operation up to 15 MA
 - Two main DT phases with multiple campaigns
 - Change of first wall material from beryllium to tungsten

New ITER Baseline

PCS and DMS commissioning

Avoid Be handling and assembly difficulties

FW more resilient to transient heat loads (PCS,

DMS and ELM-control commissioning in AFP)

Reactor relevant FW (change to W anticipated)

Merge of FP with first experimental campaigns

Opportunities

 \geq

Challenges

- Plasma start up difficult with W
- Boronization is mandatory and needs to be implemented in ITER
- > B layers retain T \rightarrow fuel removal scheme required
- Risk for Q=10 due to enhanced radiation losses

ter china eu india japan korea russia usa

ITER New Baseline – strategy for disruptions

- AFP will allow to commission the DMS and extensively test all mitigation schemes before machine activation and implementation of water cooled FW components
- ➢ W first wall will be more resilient with respect to thermal loads during the CQ
- RE impact is not mitigated by changing to W if 8 mm thickness is kept
 Jarger thickness appears possible and would allow testing the RE mitigation scheme (H SPI into RE beams)
- Trace T in H plasmas of FPO-1 will allow validating strategies for RE avoidance with beta decay seeds

New Baseline – consequences for disruptions

- CQ melting avoidance up to 11-12 MA with W wall
- TQ melt limits ~2 times higher
- DMS radiation flash load no issue for W, but still relevant for SS diagnostic FW and diagnostics/heating components

MEMOS-U simulations

©2023, ITER Organization

New Baseline – consequences for disruptions

- W has higher stopping power → more localised loads
- Higher heating at cooling interface for W → RE mitigation should be developed with inertially cooled W PFCs (AFP)

Threshold for cooling channel integrity with 8 mm W (T \approx 800°C): ~70 kJ / roof \rightarrow toroidal wetting 30% \rightarrow I_{RE} = 0.4 – 1.6 MA (1 & 100 ms impact)

iter china eu india japan korea russia usa

New Baseline – consequences for disruptions

- Disruptive plasmas (or plasmas for DMS commissioning) in AFP must deposit energy \succ (and REs) on inertially cooled wall to avoid W divertor damage
- Passive schemes not viable (Δ li moves plasmas down) \rightarrow use of VS3 to trigger \succ upwards movement (needs warning time > 10 ms)

tera china eu india japan korea russia usa

DMS Physics Basis - Experiments

- JET SPI experiments to be completed in July/August 35 (!) sessions in 2023 (talks by C. Reux and U. Sheikh and next slides for non-RE exp's)
- DIII-D: 1.5 run days completed in 2023 (talk by A. Lvovskiy, but on earlier experiments)
- ASDEX Upgrade: ITER experiments completed in 2022 SPI hardware remains on AUG for next campaign (talk by P. Heinrich)
- KSTAR: ITER experiments completed in 2022 SPI will be tested offline during shutdown (initial results presented at APS 2021 by J-H. Kim)

Tasks

- 1) SPI assimilation physics
- 2) Multiple SPI scenarios
- 3) Effect of q-profile and edge stochastization
- 4) Influence of intrinsic impurities
- 5) Impact of plasma instabilities
- 6) Radiation asymmetries
- 7) Benign RE termination
- 8) RE generation

Loads of data, here just a very limited selection. All data shown is preliminary!

Tasks

- 1) SPI assimilation physics
- 2) Multiple SPI scenarios
- 3) Effect of q-profile and edge stochastization
- 4) Influence of intrinsic impurities
- 5) Impact of plasma instabilities
- 6) Radiation asymmetries
- 7) Benign RE termination
- 8) RE generation

Note: SPI in JET from top to the HFS \rightarrow plasmoid drift carries mass towards the core

Tasks

- 1) SPI assimilation physics
- 2) Multiple SPI scenarios
- 3) Effect of q-profile and edge stochastization
- 4) Influence of intrinsic impurities
- 5) Impact of plasma instabilities
- 6) Radiation asymmetries
- 7) Benign RE termination
- 8) RE generation

Ne admixture reduces difference between ablation location and density peak \rightarrow plasmoid drift mitigation

Tasks

- 1) SPI assimilation physics
- 2) Multiple SPI scenarios
- 3) Effect of q-profile and edge stochastization
- 4) Influence of intrinsic impurities
- 5) Impact of plasma instabilities
- 6) Radiation asymmetries
- 7) Benign RE termination

8) RE generation

Single Ne/D SPI

 No impact of velocity on CQ duration → similar assimilation

Staggered SPI

- CQ unchanged despite Ne is injected into dilution cooled target (T_e a few 100 eV)
 - → lower Ne assimilation may be compensated by higher density

Dual Ne/D SPI

Faster CQ → higher assimilation

EURO*fusion*

EURO*fusion*

Tasks

- 1) SPI assimilation physics
- 2) Multiple SPI scenarios
- 3) Effect of q-profile and edge stochastization
- 4) Influence of intrinsic impurities
- 5) Impact of plasma instabilities
- 6) Radiation asymmetries
- 7) Benign RE termination

8) RE generation

D SPI assimilation from TS

Tasks

- 1) SPI assimilation physics
- 2) Multiple SPI scenarios
- 3) Effect of q-profile and edge stochastization
- 4) Influence of intrinsic impurities
- 5) Impact of plasma instabilities
- 6) Radiation asymmetries
- 7) Benign RE termination
- 8) RE generation

Pre-TQ significantly shortened for D SPI into seeded scenarios → Consequences for multiple SPI scenarios

Tasks

- 1) SPI assimilation physics
- 2) Multiple SPI scenarios
- 3) Effect of q-profile and edge stochastization
- 4) Influence of intrinsic impurities
- 5) Impact of plasma instabilities
- 6) Radiation asymmetries
- 7) Benign RE termination

8) RE generation

EURO*fusion*

Pre-TQ duration and density rise similar w/ and w/o tungsten accumulation

Can be explained by flat response on T_e of W radiation

DMS Physics Basis - Modelling activities

IO collaborations

- > SPI assimilation (INDEX, QST) *completed*
- SPI scenarios (M3D-C1, NIMROD, General Atomics) ongoing
- SPI scenarios (JOREK, Beihang University) ongoing
- ➢ RE avoidance (DREAM, Chalmers University) completed ⇒ talk by T. Fülöp
- RE mitigation (JOREK + RE fluid, IPP Garching) completed
- > AUG SPI (JOREK, IPP Garching) *ongoing*
- KSTAR SPI (JOREK, Seoul National University) ongoing

Additionally liaison with modelling activities in domestic programmes through regular meetings coordinated by E. Nardon and A. Matsuyama

iter china eu india japan korea russia usa

DMS Physics Basis – JOREK ITER SPI

D. Hu 3D H-mode simulation of dual SPI with 5x10²² Ne atoms

Plasmoid drift observed when the fragments from the first pellet reaches the pedestal

Initial W_{th} drop not radiated Total $f_{rad} \approx 50\%$

DMS Physics Basis – JOREK RE mitigation

V. Bandaru, M. Hoelzl, K. Särkimäki, H. Bergström, IO report

tera china eu india japan korea russia usa

3D simulations of the termination phase @ q=2.2 with n=1..5

Tested impact of

- Increase in resistivity
- Decrease of ion density

Both lead to reduction in RE population at end of loss phase → Supports H SPI induced recombination recipe

But: in all test cases RE loss is not complete and reformation occurs when flux surfaces heal

M. Lehnen – TSDW July 2023

DMS Physics Basis – JOREK RE mitigation

Energy load more spread for higher resistivity

Peak energy densities are not reduced

Similar, but weaker effect for lower D ion density

V. Bandaru, M. Hoelzl, K. Särkimäki, H. Bergström, IO report

iter china eu india japan korea russia usa

DMS Physics Basis – INDEX SPI assimilation

ITER pre-TQ simulations

Two stage plasma cooling

- ➢ Dilution cooling to ~100 eV ablation rate $f(T_e)$ → self-regulated
- Cold front (~10 eV) through radiation

Note: Current redistribution and TQ onset depend on cold front dynamics

A. Matsuyama, PPCF 2022

DMS Physics Basis – Fragment parameters

A. Matsuyama, IO report

 Simulations suggest deeper penetration with

- larger fragment size
- higher velocity
- higher velocity dispersion Δv/v
- Recommended from simulations:
 v = 500 m/s, α = 15° ("large")

iter china eu india japan korea russia usa

DMS Physics Basis – Pellet Size

Low assimilation driven plasma cooling and TQ onset

Only 350 MJ (!) plasmas absorb almost an entire 28.5 mm pellet

Assimilation of 2nd pellet negligible in L-mode and still low in H-mode for realistic synchronisation within 2 ms

Smaller pellets would allow testing/using dual injection in pre-FPO

INDEX, A. Matsuyama

5e22 Ne and 1.8e24 H atoms in full size (single/dual) L-mode: Smaller pellets \rightarrow Ne quantity reduced proportionally

iter china eu india japan korea russia usa

DMS Physics Basis – Pellet Size

INDEX, A. Matsuyama

TCPN china eu india japan korea russia usa

Main remaining R&D needs

- Impact of plasmoid drift on mass assimilation (back-averaging/teleportation model used in most cases, though JOREK sees plasmoid drift in H-mode)
- Refinement of TQ onset criteria in 1D transport simulations for better estimates of assimilated mass
- > Validate required pellet sizes, fragment sizes and speed
- Impact of seeded ITER plasma scenarios on mitigation schemes
- Quantification of required H for benign RE termination: self-consistent description of atomic, RE and MHD physics
- Assess RE avoidance schemes with more complete and self-consistent models (impact of vertical displacement, TQ and CQ radial transport losses, etc.)
- Simulations/Estimates to quantify required T to carefully assess impact of beta decay seeds in FPO-1 with H plasmas