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Post-disruption waves and runaway electrons

2

Several tokamaks reported/ing post-disruption waves. A few examples: 
• AUG: post-disruption waves happen frequently, but no runaway electron impact [Heinrich] 

• DIII-D: many dedicated experiments, waves with RE impact [Paz-Soldan, Lvovskiy, Liu ...] 

• JET: lots of old data, including DT shots [Newton, Sharapov, ...] 

• TEXTOR [Koslowski], ... 

Two key considerations: 
1. AUG low Tth scenario to study a "zoo" of modes ➡ key is the low damping at low temp 

[Lauber IAEA 2018, Horváth NF 2016] 

2. On ITER there will also be DT alphas to provide mode drive 
➡ Can we expect modes, and runaway suppression by them, at ITER? 
For more details, see: Lier et al., NF 63 056018 (2023)
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The core idea
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[A. Lier, PhD Thesis (2023)]
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We set out to understand the following: 
• What happens to alpha particles in mitigated ITER disruptions? [CODION1, analytical2] 

• How does the equilibrium evolve, and what modes can it support? [VMEC3, LIGKA4] 

• What modes can be driven, considering the drive and damping? [LIGKA, CASTOR5] 

• What will be the saturated mode structure & amplitudes? [HAGIS6] 

• What RE transport can these modes cause? [ASCOT57] 

• What impact will this have on the RE dynamics? [DREAM8] 

⬆This list doubles as the outline

1CODION: Embreus PoP 22 052122 (2015) 5CASTOR: Kerner JCP 142 271 (1998)
2analytical: Lier NF 63 056018 (2023) 6HAGIS: Pinches PPCF 46 B187 (2004)
3VMEC: Hirshman CPC 43 143 (1986) 7ASCOT5: S. D. Scott JPP 86 865860508 (2020)
4LIGKA: Lauber JPCS 226 447 (2007) 8DREAM: Hoppe CPC 268 108098 (2021)
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The toolchain
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[A. Lier, PhD Thesis (2023)]
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Key assumptions
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• ITER 15 MA scenario #2 1:1 DT 
• Prescribed exponential temperature drop with tTQ to Tf = 10 eV 
➡Performed a scan for tTQ, note tN = t / tTQ normalisation 

• Singly-ionised impurities appear instantaneously as a flat profile 
➡Performed a scan for Ne + D2 mixtures 

• We assume that there is good confinement of alphas - better than REs anyway 
➡Performed a scan for intermittent transport (similar to ASTRA / AUG [Linder JPP 2021]) 

• On the interesting (TQ) time scale, the equilibrium is assumed fixed 
➡Performed a scan for q0 

• HAGIS cannot treat alpha thermalisation during the mode evolution 
➡ I will discuss the timescales; but treat amplitudes as upper estimates

➡ Uncertain parameters (tTQ, D2:Ne, α transport, q0) are scanned
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Alpha particle dynamics
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We can calculate the evolution of the alpha distribution in a disruption 
• CODION is not the cheapest for doing large parameter scans 
➡ Developed a fast analytical cooling alpha model (for equations, see [Lier NF 2023])

CODION

analytical

Validation Thermalisation

(a) Validation of analytical model with CODION (b) 5-25 ms window for mode drive
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Mode structures (LIGKA)
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Large number of TAE modes found for all q0 scanned 
• VMEC thermal quench equilibrium 

• Up to 13 poloidal harmonics, f ~ 80 kHz

low n high n

n

• Core localised modes + lot of overlap (flat core q) 
➡Beneficial for transport
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Mode damping
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LIGKA-calculated damping, includes 
• Nonlocal continuum damping, ion & electron Landau damping, radiative damping 

• Negligible collisional damping on trapped electrons and resistive fluid damping if t < 8tTQ 

• Ion Landau damping is dominant, but decays exponentially with temperature 
• Electron Landau damping is proportional to pressure, which also drops 

• Negligible continuum damping for TAEs 

• Radiative damping (FLR effect) - drops with decreasing Larmor radius (TQ) 

• Once the temperature reaches ~eV, cold plasma damping becomes important

➡ All main damping effects are considered, or are negligible
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Mode damping scans
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Mode amplitudes (HAGIS)
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First shown: time evolution of unmitigated case tTQ = 1 ms 
• Simulations started at t = 1.5 tTQ  (low damping) and run until thermalisation 

• Linear growth is 𝛄/ω ~ 1.8%, saturation at ≤1 ms

Reduced set

➡ Significant amplitudes (dB/B ~ 0.1% - 1%) reached well before α thermalisation!

(b)
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Mode amplitude parameter scan
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Diffusion (exp decay) 1-100 m2/s, tTQ = 1-3 ms, ne1 = 1-4 ne0, nNe/nD = 0-1. 
• Drop of amplitude with ne 
➡ Increased damping and alpha thermalisation 

• Drop of amplitude with tTQ 
➡More time for alphas to thermalise 

• Drop of amplitude with Ne% 
➡Change of Alfvén speed ➡ resonance 

• Drop of amplitude with transport 
➡ Lower alpha pressure gradient for drive 

• Drop of amplitude with time point chosen 
➡More time for alphas to thermalise

t=1.5 tTQ➡ Unmitigated cases have higher amplitudes
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Runaway transport
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Calculated using ASCOT5 test particle tracing 
• Using the highest amplitude case, full mode set, RMS amplitude over 0.5 ms 

• Maximum diffusion is ~1.4·104 m2/s, comparable to Rechester-Rosenbluth value

 Particle Poincaré plot 
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Runaway dynamics
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Self-consistent dynamics calculated with DREAM 
• Transport from ASCOT5, strongest (no MMI) case 

• Scaling scan for transport from x1e-4 to x1e2 

x10

d1000

➡ Perturbation leads to an increase in runaway current!

Higher 
transport
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Did you say INCREASE in runaway current?!

1 5

Avalanche increased due to seed redistribution! 
• We have seen before, that perturbations can do this to REs 

• Perturbation threshold for full RE suppression not reached 

BUT! combined with other (edge) perturbation sources...?

d1000

x10
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Summary

1 6

The impact of alpha particles on runaway electron dynamics in ITER 
  Lier et al., NF 63 056018 (2023) 
• Alphas take several milliseconds to thermalise in an ITER TQ 

• During this time the damping drops faster than the alpha pressure gradient 

• The equilibrium can sustain many (partially overlapping) TAEs at < 1% max amplitudes 

• TAEs cause significant core RE transport, but 

• This alone would lead to an increase in RE current! 
➡Can this be combined with off-axis transport (MHD, RMP, REMC, etc)? 

• This is still an intrinsic core RE transport mechanism! 
➡Most effective in unmitigated scenarios - when we need natural mitigation the most!


