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VDE

ITER Physics Expert Group on Disruptions, Plasma
Control, and MHD (1999) Nucl. Fusion 39 2251

3

Precursor’s prediction and detection crucial to avoid disruptions, 
but challenging task!

Courtesy: A. Pau, PSFC seminar, April 2023
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● Statistical studies on disruption 
frequency (and type) not available 
across different tokamaks.

● Notable efforts on event analyses on 
KSTAR, MAST, NSTX/-U dbs → DECAF

● Wealth of experimental data from 
different tokamaks enables Machine 
Learning applications.

● Need timely identification of 
precursors to allow the plasma 
control system (PCS) to take proper 
avoidance action.

No first-principle solution to capture predisruptive chain of events

 

VDE

Courtesy: A. Pau, PSFC seminar, April 2023

De Vries et al. NF 51 (2011) 053018 “Survey of disruption causes at JET”

Sabbagh et al PoP 30 032506 (2023) and later talk
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Active monitoring and prediction of soft/hard limits necessary
to inform transition across operational boundaries
Adapted from J. Barr IAEA TM PDM 2020 and
Sammuli et al 2021 Fusion Eng. Des. 169 112492

Data-driven models developed to provide 

● Explainable proximity to unstable operational space
● Interpretable tracking of instability onset

Performance optimization Instability avoidance Disruption mitigation
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Established multi-machine databases of disruption-relevant 
parameters foundational to ML applications

Device Discharges Samples

C-Mod 5,500 500,000

DIII-D 13,000 3,000,000

EAST 19,000 1,500,000

● SQL dbs of times series for > 50 plasma 
signals

● Annotated events
○ disruptive vs non-disruptive,
○ H-L back transitions,
○ radiative collapses,
○ density limit,
○  …

 Turner, Rea (MIT)
 https://github.com/MIT-PSFC/disruption-py
 (currently private repo) 

DisruptionPy

MDSplus 
exp. DB

usersRea et al, 2018 Plasma Phys Control. Fusion 60 084004
Montes, Rea et al, 2019 Nucl. Fusion 59 096015

● DisruptionPy: interoperable library for 
data retrieval and database development 
across different devices 
○ Modular structure + version controlled
○ Available for Alcator C-Mod and 

DIII-D, soon EAST

Local DB Remote DB

workflows

https://github.com/MIT-PSFC/disruption-py
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Advances in Disruption Prevention 
via Machine Learning:

Interpretation as Iterative process 
involving subject matter experts to 

preserve physics fidelity and 
performance accuracy

Adapted from A. Pau et al, Nuclear Fusion, 59(10):106017, 2019

○ DPRF 
○ SORI
○ Hybrid Deep Learning modeling
○ Proximity-to-instability
○ Time-to-event frameworks
○ Data labeling and augmentationOverview of ML workflow



C. Rea | TSDW | 07/20/238

1. Intro and motivations

2. Explainable and adaptive Machine Learning for disruption prevention
○ DPRF 
○ SORI
○ Hybrid Deep Learning modeling
○ Proximity-to-instability
○ Time-to-event frameworks
○ Data labeling and augmentation

3. Conclusions

Available in real-time at DIII-D
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Explainable ML for disruption prediction and 
stability boundaries identification in real-time
● Disruption Prediction via Random Forest computes probability of an impending 

disruption, while interpreting its drivers in real-time.
○ Available on DIII-D and EAST.

#175552

contribution 
to 

disruptivity

Rea et al, Nucl. Fusion 59 (2019) 096016
Rea et al,  2021 IAEA EX/P1–25,
J. Barr et al, Nucl. Fusion 61 (2021) 126019

DPRF
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C. Rea et al 2021, 28 th IAEA FEC, EX/P1-25

Off-Normal Fault Response → Asynchronous and Emergency response. 
Eidietis et al., 2018 Nucl. Fusion 58 056023

Real-time model evaluation and 
feature contribution computation: < 200 µs

Successful ONFR integration:
● Fast shutdown triggered by preset 

disruptivity threshold.

● MGI response and ECH trigger in 
closed loop.

DIII-D 180805

ONFR

10

Real-time implementation and optimization for
asynchronous avoidance and emergency response
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DPRF

Prox Ctrl

Used to regulate plasma stability and performance in 
DIII-D Proximity Control architecture

DPRF + ProxCtrl:
● Disruptivity measures proximity to 

unstable operating space
● Feature contributions can be 

mapped onto controllable plasma 
parameters to regulate stability

    Barr et al, Nucl. Fusion 61 (2021) 126019
    Rea et al 2021, 28th IAEA FEC, EX/P1-25
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DPRF evaluations 
obtained by sampling 
from 2D operational 
regime variations

Boyer, Rea, Clement, Nucl. Fusion 62 (2022) 026005 
and continued work by  Keith, Rea (MIT), Felker 
(ANL), Erickson (PPPL)

12

Safe operating regions identification (SORI) 
through DPRF for disruption-free trajectory planning

time

high danger

safe region

ML-driven optimization (Genetic 
Algorithms) to identify trajectory across 
operational space and in real-time 
control systems (DIII-D PCS).

Best operating point found via convex
set of linear constraints to calculate 
disruption proximity.

SORI
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more at APS-DPP 2023
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Hybrid Deep Learning architecture for cross-machine
disruption prediction using time series data

Goal: to learn general disruption 
dynamics from available 
experimental data.

Right now being benchmarked 
against newer / fancier 
architectures – i.e., transformers
Spangher, Rea, Eni+MIT partnership

Plasma state

black box
J.X. Zhu, Rea et al, 2021 Nucl. Fusion 61 026007

HDL



C. Rea | TSDW | 07/20/23

Training sets:

DIII-D LP

DIII-D LP + EAST HP

Other combinations

15

Scenario-adaptive Hybrid Deep Learning predictor as  
DMS trigger candidate (ITER/SPARC)

● Adapt current state-of-the-art ML 
predictors to different operational 
regimes across devices (DIII-D/EAST).

● Adaptive strategies:
○ ad-hoc design of training sets to 

match target domain by fully 
exploiting existing data1, 

○ retrain predictors after 
performance degradation2.

Adapted from 1J.X. Zhu, Rea et al, Nucl. Fusion (2021) 114005
2J. Vega et al., Nat. Phys. 18, 741–750 (2022)

Task: predict DIII-D HP
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Hybrid Deep Learning architecture optimized for 
precursor identification via multi-task learning

Plasma state

Combined loss 
function for 
multi-task 
learning
→ improved 
accuracy

Adapted from J.X. Zhu, Rea et al, 2023 
Nucl. Fusion 63 046009
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Symbolic ML for disruption-free operations 
in regimes close to density-limit 
Density is critical design parameter: 
➔ fusion power density ∝ n2

Power plant design points usually close to the 
empirical density limit Greenwald et al., Nucl. Fusion (1988)

Edge density 
↑ 

Edge 
temp. ↓

Temp.
instability

Disrupt 
via 

MHD

Current 
channel 
shrinks

H/L

Better (interpretable) tools needed to 
understand & avoid density limit events:

● Focus on DIII-D data
● Extension to other devices (C-Mod, 

EAST, TCV, AUG)

Maris, Rea (MIT), Pau (EPFL), work in progress 

Berkery et al 2023 Plasma Phys. Control. Fusion in press
Manz et al 2023 Nucl. Fusion 63 076026;
Zanca et al 2019 Nucl. Fusion 59 126011; 
Giacomin et al 2022 Phys. Rev. Lett. 128 185003;
Singh and Diamond 2022 Plasma Phys. Control. Fusion 64 084004; 
Stroth et al 2022 Nucl. Fusion 62 076008;
Brown and Goldston 2021 Nucl. Mater. Energy 27 101002;
Bernert et al Plasma Phys. Control. Fusion 57 (2015) 014038;
Maraschek et al Plasma Phys. Control. Fusion 60 (2018) 014047; …

density 
limit

Stable
Density limit precursor
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Symbolic ML to find data-driven risk for n=1 TM onset

● Backward feature elimination and 
probabilistic model selection combined to 
identify the “TM risk”

● Features: 

● Focus on ITER Baseline scenarios
○ boundary version available for 

scenario-agnostic runs

J.X. Zhu, Rea, et al 2023 JoFE in preparation

tearing 
stability

Available in real-time at DIII-D
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DIII-D real-time qualification of data-driven TM risk during FY22

● LRHO DIII-D experiment (summer 2022)

● TM level integrated with ONFR (K. Erickson, J. 
Barr)

● Experimental plan to sweep TM level 
parameters (Ip, Bt, …) inter and intra shot and 
to scan thresholds in TM level and time delay

● Goal: trigger the ONFR for soft landing or TM 
avoidance.

● Successful IBS TM avoidance example: 
Level down Ip at 1.35MA (from 1.5MA) and 
trigger soft landing using ONFR and TM risk.

J.X. Zhu, Rea, et al 2023 JoFE in preparation

Available in real-time at DIII-D
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Towards tearing onset prediction with physics-informed Machine
Learning for scenario design

● Physics-informed ML tearing stability metric for time-independent magnetic equilibria

● Initial study with classical tearing stability, synthetic data:
- Equilibria in cylindrical geometry generated and evolved linearly in M3D-C1
- Predictive tool will leverage: 

■ observed M3D-C1 growth rates 
■ Δ’ in the constant-psi approximation
■ ratios of big and small asymptotic solutions in inner resistive-MHD and outer 

ideal-MHD regions about the rational surface
■ growth rates from asymptotic matching

● Tearing mode database project (TMDB): a community-driven db to study ML-accelerated 
tearing stability
○ Collect stability terms (community-driven)
○ Focus on DIII-D data, expand to C-Mod, …
○ Provides NTM phenomena to ML predictor 

● TMDB will be publicly available Benjamin, Clauser, Rea, Sweeney, ongoing work
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Predict “time-to-disruption” risk using ML-driven
classification probability

22

Tinguely, Montes, Rea et al 2019 PPCF 61
Olofsson et al 2018 PPCF 60
Olofsson et al 2018 FED 146
Continued work by Keith, Rea, Tinguely (MIT)

Any classification probability (𝑃𝐷) cast between [0,1]
can be used to:

● Predict the future probability of 
plasma survival 𝑆(𝑡+Δ𝑡|𝑡)  
or

● Model the instantaneous hazard  ℎ=d ln 𝑆/d𝑡 
to be used as probability generator.

Hazard function modeling connects dynamical systems 
and risk-aware control design by probability generation.

C-Mod data used as proof of concept to combine DPRF 
(or any classifier) disruptivity with survival analysis.

time-to-
event
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● Disruptions modeled as Poisson processes with stability time inferred from database analysis:

● Maximum likelihood estimation ensures statistical robustness, even when disruptivity (s-1) very high

23

Defining data-based disruptivity in statistically robust way

probability of 
disrupting in next Δt (s)

Pulse planning parameter 
space optimization

Real time nonlinear 
boundary avoidance Kaloyannis (EPFL), Rea, 2023 Master’s thesis 
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Gradient boundary avoidance from offline disruptivity maps

● From offline disruptivity, create best fit surface over plasma parameters (offline)

● Interpolate surface for the disruptivity (potentially in real-time)

● Compute the disruption probability and map’s gradient

● Apply gradient descent, weighted by disruption probability Kaloyannis (EPFL), Rea, 2023 Master’s thesis 

ramp-up
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LabelProp
Montes, Rea et al 2021 Nuclear Fusion 61 026022

Student-t surrogates
Rath, Rügamer, Bischl, von Toussaint, Rea, Maris et 
al, 2022 J. Plasma Phys. 88 

Not enough 
time 😓
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Disruption prevention solutions via ML

● Fusion energy systems need robust models featuring
○ interpretability/explainability
○ well-defined validity and extrapolability boundaries (UQ)
○ risk-awareness, conditioned on consequences/effects

● Active disruption research developing
a. Interpretable algorithms 
b. Explainable predictions
c. Transfer/adaptive learning 
d. Time-to-event frameworks
e. Data augmentation and labeling
f. …

● MIT team actively contributing to ITER disruption research 
and SPARC disruption strategies development.

Thank you! < crea@psfc.mit.edu >

mailto:crea@psfc.mit.edu

