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Preview

@ Numerical analysis of the linearzied
MHD+fluid runaway electron(RE)
equations in cylindrical geometry was

performed.

@ Resistivity scaling of linear growth rates v V¥ ¥
for a tearing unstable equilibrium shows 10-1 AR IR AR AR — - v
the fastest growing mode transitions from |
m = 2 to m =1 at large resistivity. ” i

-2
@ The mode is overstable, with |w| > 7. 310 i o
= v

@ Preliminary analysis suggests a resistive 10-3 o (] O o
hose-like instability? g 2 u

@ Dominance at high resistivity suggests . u D o= R
the beam mode may be important in 10° m 4 w' — 7 et
post-thermal quench tokamak scenarios. ] i :
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Introduction Model

The fluid RE model augments the resistive MHD equations.

on,
; +V - (nyuy) = Sp(€)) + Sa(E)) + D, V2n,, (1)

where n, is the number density of runaways, Sp, S4 are sources, D, is a
numerical diffusion coefficient and

E .~ ExB
€|| H Uy = _Crb + 77 Cr = const. > 'Uth757UA
Ep’
B needIn A
b= dmegT.,

And a modified Ohm's law:

E=—-vxB+nJ-J,) (2)
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Introduction Model

This model is useful for disruption modeling.

o Cai and Fu use a fluid model in the M3D code to consider runaways effect on
the resistive internal kink.1

@ Bandaru, et al use a fluid model including sourcing in JOREK to simulate RE
beam termination in JET experiments.?

@ Liu, et al have used M3D-C1 calculations to self-consistently simulate
resistive kinks in post-disruption plasmas.3

IH. Cai and G. Fu, Nuclear Fusion 55, 22001 (2015).
2V. Bandaru et al., Plasma Physics and Controlled Fusion 63, 10.1088/1361-6587/abdbcf (2021).
3C. Liu et al., Plasma Physics and Controlled Fusion 63, 10.1088/1361-6587/ac2af8 (2021).
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Introduction Model

In this work we consider the linearized equations around a 0-73
equilibrium supported by runaway electron current.

Lowercase letter variables are perturbed quantities, capital letter variables are equilibrium
quantities:

B b
on. +V - (.U, + Nyu,) =0, U, = g Ur = —crf
pohv=3xXx B+Jxb 0b=-VxXe

V Xb=pog,
e=-vxB+n(j-j,)
i, =—e(n.U, + Nyu,)

V-b=0

Uniform constant plasma density, p, and uniform, constant resistivity 1. No equilibrium
flow: V' =0. ¢, > 0 is the parallel speed of runaway electrons along magnetic field lines.
Source terms and RE drift effects are neglected in this linear analysis.
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Introduction Resistive Hose Instability

Energetic particle beams in a background plasma are susceptible
to long-wavelength instabilities.

The literature considers self-pinched beams of relativistic electrons moving through a resistive neutralizing
background plasma. The fundamental instability picture is

@ Perturbed particle orbits generate RE current.
@ Eddy currents induced in the ohmic bulk plasma decay.

@ The imperfect cancellation of the perturbed RE current by the ohmic plasma currents allows an
overstable oscillation.

Some relevant key features of the analyses:
@ Unstable modes are essentially transverse to the beam axis.
The m = 1 is generally most unstable, and is referred to as the 'resistive hose' instability*

(]

@ The axial wavenumber, k is small.

@ The perturbed motion of the background plasma is negligible ( other than neutralizing the beam. )
o

Growth rate is asymptotically linear in 7 in the small n regime

4M. N. Rosenbluth, Physics of Fluids 3, 932-936 (1960), S. Weinberg, Journal of Mathematical
Physics 5, 1371-1386 (1964).
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Introduction Resistive Hose Instability

Instability requires only EM Field 4+ RE current.

Low-frequency EM wave equation w/RE (,7,,) and Ohmic plasma currents o E:

~0
VXV XE —%: —4miwg, — dmiwo B

How j, is calculated determines physics fidelity for RE orbits:

Rosenbluth uses relativistic kinetics: Fluid model assumes m = 0
p/m — ¢, :
-V X B
ofor BV e (g PXB ) g sy, et p
/1 +p2 m /1 _|_p2 r B )
ec; Oy +V-3.=0.
jr _ _E pf d3p r Uty Jr

m 2
L+p RE's only move along B
MHD flow and details of RE physics are non-essential for instability.
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Introduction NIMROD implementation

NIMROD? finds time-dependent solutions of the linearized
MHD-+RE equations

@ NIMROD uses a Fourier representation of the axial direction in cylindrical
geometry.

@ Linear problems decouple harmonics: f(r,0,z,t) ~ f(r,0,t) exp(ikz), then
time-evolution for each k from an arbitrary initial condition is computed.

@ A high-order finite element representation is used in the r, 6 plane.

@ The equations are integrated in time with a semi-implicit scheme.

5C. Sovinec et al., J. Comp. Phys. 195, 355 (2004).
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Introduction NIMROD implementation

The linearized MHD+RE system is solved with NIMROD, and a
1D radial eigenvalue code.

e NIMROD representation: f(r,0,z,t) ~ f(r,0,t)exp(ikz).

e Eigenvalue code representation: f(r,0,z,t) ~ f(r)exp(ikz + mé — iwt)
NIMROD:

@ 2D finite element representation in o Assumes cvlindrical symmetr
(R, Z) = (r,0) ! e

Eigenvalue Code:

o PDE IVP for n,. b, v given k @ 1D finite element representation in r

@ Solution tends to the most unstable ° 3DE EVP for n,,b,v given k and

mode as t — o
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Benchmarking

Cylindrical equilibrium taken from Liu et. al® was used to
benchmark implementation.

L=20m, a=1,
B:(r=0)=1, pp=1,
e =20, B =0,

q(r) = 1.15(1 + (1.234r)?)

@ All the equilibrium current is carried by
runaways

@ ¢(0)>1

@ In resistive MHD the most unstable T
mode is the m = 2 tearing mode

6C. Liu et al., Physics of Plasmas 27, 10.1063/5.0018559 (2020).
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Benchmarking

Results from Liu, et al. compare an analytic growth rate scaling
with linear M3D-C1 calculations for the (2,1) tearing mode.’
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7C. Liu et al., Physics of Plasmas 27, 10.1063/5.0018559 (2020). 1w
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Benchmarking

Both NIMROD and eigenvalue code reproduces published result

on tearing with REs for small 7.
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Radial structure of beam mode differentiates it from either the
kink or tearing mode
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The eigenfunction of the tearing mode (left) at S = 10% is localized near the q = 2 rational surface with
poloidal mode number m = 2. The fastest growing mode at S = 102, has m = 1, and is not localized
near the rational surface.

13/21



Neglecting velocity perturbations does not affect the mode.

Set v ~ 0, and change variables to A, = ugec, N, /B, A\, = poecyn,./B, then since
8tB =0:

A\, — % (B-V\ +V-(Ab1)) =0, (3)

9b =LV x (\B+Ab,)— LV xV xb. (4)
Ho Ho

This simplified system was solved with the 1D eigenvalue code.
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A further reduced model reveals that the instability is primarily
driven by the gradient in the equilibrium runaway current.

Since the axial component |b,| < |b;|, |bg|, simplify the system via b= V¢ X 2.
Additionally, we neglect terms of order r/R ~ By/B, and assume
B, ~ By = const. (large-aspect ratio).

. BV
iF(r)= 5
mA
(W e F(r))\ = —c, =t
1 2
wip — i ((m’)’ - ”Zw) —i-LB.A,.
Ho \T r Ho

The eigenvalues of this reduced system are also sought with a 1D spectral method.
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This description of beam-plasma interaction is similar to resistive
hose theory

The lowest order description of the beam problem given by Weinberg?® is

1 m? 4miw 4mievw
U ’

—(rE1,) - Ei+— 5

T T c c

ni.

Where E . is the axial electric field, n1 is the perturbed beam density, o the bulk plasma conductivity,
and v the axial beam velocity. This is equivalent to our equation for 1) after the substitutions
E1, = iwy, dnwo/c® — po/n, 4n/c2(evny) — By -

1 2
wp— i (,Wy o ) —i" B
Ho \7 Ho

r2

8S. Weinberg, Journal of Mathematical Physics 8, 614641 (1967).
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The reduced models are sufficient to describe the instability.

@ EV calculations of
growth rates and
frequencies of the beam
mode with m = 1 agree

between all three models.

@ The ability to neglect v
suggests that the
dimensionless number of
importance is something
other than the Lundquist
number, S.( maybe
acrpio/m)

*
& * & &
23]
23]
3]
© O +RE+MHD A w; RE+MHD
Y B = ;B\,
m A Y, Ay » wv
10° 107> 104 1073 1072
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Beam Mode

Radial profiles of reduced model eigenfunctions give some

insight.
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Eigenvalue calculations from the 1D code observe the same
mode structure and growth rates as in the NIMROD calculation.

by

~1.0 -0.5 0.0 0.5 1.0
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Conclusions

Conclusions: Linear simulations have revealed an effect of RE
current on resistive MHD instabilities.

@ Prior analytic and computational results have shown that the linear behavior tearing
and resistive kink modes are affected by the presence of runaway electron current.

@ In a cylindrical (2,1) tearing mode case, NIMROD and Eigenvalue calculations agree
with published results for 1/ < 10%.

@ For n/uo > 104, there is a distinct, faster growing mode that is associated with the
presence of the RE beam.

@ The form of the reduced model suggests it is related to the resistive hose instability.
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Conclusions
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At large resistivity, eigenvalues scale with 7 the same way
observed in the MHD simulation in the high-n regime.
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