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Preview
Numerical analysis of the linearzied
MHD+fluid runaway electron(RE)
equations in cylindrical geometry was
performed.

Resistivity scaling of linear growth rates
for a tearing unstable equilibrium shows
the fastest growing mode transitions from
m = 2 to m = 1 at large resistivity.

The mode is overstable, with |ω| ≫ γ.

Preliminary analysis suggests a resistive
hose-like instabilityab

Dominance at high resistivity suggests
the beam mode may be important in
post-thermal quench tokamak scenarios.

aM. N. Rosenbluth, Physics of Fluids 3,
932–936 (1960).

bS. Weinberg, Journal of Mathematical
Physics 8, 614–641 (1967). 2 / 21
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Introduction Model

The fluid RE model augments the resistive MHD equations.

∂nr
∂t

+∇ · (nrur) = SD(E∥) + SA(E∥) +Dr∇2nr, (1)

where nr is the number density of runaways, SD, SA are sources, Dr is a
numerical diffusion coefficient and

E|| ≡
E||

ED
, ur = −crb̂+

E ×B

B2
, cr = const. ≫ vth,e, vA

ED =
nee

3 ln Λ

4πϵ0Te
.

And a modified Ohm’s law:

E = −v ×B + η(J − Jr) (2)
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Introduction Model

This model is useful for disruption modeling.

Cai and Fu use a fluid model in the M3D code to consider runaways effect on
the resistive internal kink.1

Bandaru, et al use a fluid model including sourcing in JOREK to simulate RE
beam termination in JET experiments.2

Liu, et al have used M3D-C1 calculations to self-consistently simulate
resistive kinks in post-disruption plasmas.3

1H. Cai and G. Fu, Nuclear Fusion 55, 22001 (2015).
2V. Bandaru et al., Plasma Physics and Controlled Fusion 63, 10.1088/1361-6587/abdbcf (2021).
3C. Liu et al., Plasma Physics and Controlled Fusion 63, 10.1088/1361-6587/ac2af8 (2021).
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Introduction Model

In this work we consider the linearized equations around a 0-β
equilibrium supported by runaway electron current.

Lowercase letter variables are perturbed quantities, capital letter variables are equilibrium
quantities:

∂tnr +∇ · (nrU r +Nrur) = 0, U r = −cr
B

B
, ur = −cr

b⊥
B

ρ∂tv = j ×B + J × b, ∂tb = −∇× e

∇× b = µ0j,

e = −v ×B + η (j − jr)

jr = −e (nrU r +Nrur)

∇ · b = 0

Uniform constant plasma density, ρ, and uniform, constant resistivity η. No equilibrium
flow: V = 0. cr > 0 is the parallel speed of runaway electrons along magnetic field lines.
Source terms and RE drift effects are neglected in this linear analysis.
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Introduction Resistive Hose Instability

Energetic particle beams in a background plasma are susceptible
to long-wavelength instabilities.

The literature considers self-pinched beams of relativistic electrons moving through a resistive neutralizing
background plasma. The fundamental instability picture is

Perturbed particle orbits generate RE current.

Eddy currents induced in the ohmic bulk plasma decay.

The imperfect cancellation of the perturbed RE current by the ohmic plasma currents allows an
overstable oscillation.

Some relevant key features of the analyses:

Unstable modes are essentially transverse to the beam axis.

The m = 1 is generally most unstable, and is referred to as the ‘resistive hose’ instability4

The axial wavenumber, k is small.

The perturbed motion of the background plasma is negligible ( other than neutralizing the beam. )

Growth rate is asymptotically linear in η in the small η regime

4M. N. Rosenbluth, Physics of Fluids 3, 932–936 (1960), S. Weinberg, Journal of Mathematical
Physics 5, 1371–1386 (1964).
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Introduction Resistive Hose Instability

Instability requires only EM Field + RE current.

Low-frequency EM wave equation w/RE (,jr,) and Ohmic plasma currents σE:

∇×∇×E −���*
∼ 0

ω2E = −4πiωjr − 4πiωσE

How jr is calculated determines physics fidelity for RE orbits:

Rosenbluth uses relativistic kinetics:

∂tfr +
p · ∇f√
1 + p2

+
e

m

(
E − p×B√

1 + p2

)
· ∇vf = 0,

jr = − e

m

∫
pf√
1 + p2

d3p

Fluid model assumes m = 0
p/m→ cr :

jr =
ecrnr
B

B,

ecr∂tnr +∇ · jr = 0.

RE’s only move along B

MHD flow and details of RE physics are non-essential for instability.
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Introduction NIMROD implementation

NIMROD5 finds time-dependent solutions of the linearized
MHD+RE equations

NIMROD uses a Fourier representation of the axial direction in cylindrical
geometry.

Linear problems decouple harmonics: f(r, θ, z, t) ∼ f(r, θ, t) exp(ikz), then
time-evolution for each k from an arbitrary initial condition is computed.

A high-order finite element representation is used in the r, θ plane.

The equations are integrated in time with a semi-implicit scheme.

5C. Sovinec et al., J. Comp. Phys. 195, 355 (2004).
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Introduction NIMROD implementation

The linearized MHD+RE system is solved with NIMROD, and a
1D radial eigenvalue code.

NIMROD representation: f(r, θ, z, t) ∼ f(r, θ, t) exp(ikz).

Eigenvalue code representation: f(r, θ, z, t) ∼ f(r) exp(ikz +mθ − iωt)

NIMROD:

2D finite element representation in
(R,Z) 7→ (r, θ)

PDE IVP for nr, b,v given k

Solution tends to the most unstable
mode as t→ ∞

Eigenvalue Code:

Assumes cylindrical symmetry

1D finite element representation in r

ODE EVP for nr, b,v given k and
m
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Benchmarking

Cylindrical equilibrium taken from Liu et. al6 was used to
benchmark implementation.

L = 20π, a = 1,

Bz(r = 0) = 1, µ0ρ = 1,

cr = 20, β = 0,

q(r) = 1.15(1 + (1.234r)2)

All the equilibrium current is carried by
runaways

q(0) > 1

In resistive MHD the most unstable
mode is the m = 2 tearing mode

6C. Liu et al., Physics of Plasmas 27, 10.1063/5.0018559 (2020).
10 / 21

https://doi.org/10.1063/5.0018559
https://doi.org/10.1063/5.0018559


Benchmarking

Results from Liu, et al. compare an analytic growth rate scaling
with linear M3D-C1 calculations for the (2,1) tearing mode.7

7C. Liu et al., Physics of Plasmas 27, 10.1063/5.0018559 (2020).
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Benchmarking

Both NIMROD and eigenvalue code reproduces published result
on tearing with REs for small η.
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Beam Mode

Radial structure of beam mode differentiates it from either the
kink or tearing mode

The eigenfunction of the tearing mode (left) at S = 104 is localized near the q = 2 rational surface with
poloidal mode number m = 2. The fastest growing mode at S = 102, has m = 1, and is not localized
near the rational surface.
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Beam Mode

Neglecting velocity perturbations does not affect the mode.

Set v ∼ 0, and change variables to Λr = µ0ecrNr/B, λr = µ0ecrnr/B, then since
∂tB = 0:

∂tλr −
cr
B

(B · ∇λr +∇ · (Λrb⊥)) = 0, (3)

∂tb =
η

µ0
∇× (λrB + Λrb⊥)−

η

µ0
∇×∇× b. (4)

This simplified system was solved with the 1D eigenvalue code.
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Beam Mode

A further reduced model reveals that the instability is primarily
driven by the gradient in the equilibrium runaway current.

Since the axial component |bz| ≪ |br|, |bθ|, simplify the system via b = ∇ψ× ẑ.
Additionally, we neglect terms of order r/R ∼ Bθ/B, and assume
Bz ∼ B0 = const. (large-aspect ratio).

iF (r) ≡ B · ∇
B

,

(ω + crF (r))λr = −cr
mΛ′

r

r

ψ

B
,

ωψ − i
η

µ0

(
1

r
(rψ′)′ − m2

r2
ψ

)
= i

η

µ0
Bzλr.

The eigenvalues of this reduced system are also sought with a 1D spectral method.
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Beam Mode

This description of beam-plasma interaction is similar to resistive
hose theory

The lowest order description of the beam problem given by Weinberg8 is

1

r
(rE′

1z)
′ −

m2

r2
E1,z +

4πiω

c2
E1z = −

4πievω

c2
n1.

Where E1z is the axial electric field, n1 is the perturbed beam density, σ the bulk plasma conductivity,
and v the axial beam velocity. This is equivalent to our equation for ψ after the substitutions
E1z = iωψ, 4πωσ/c2 → µ0/η, 4π/c2(evnr) → Bzλr :

ωψ − i
η

µ0

(
1

r
(rψ′)′ −

m2

r2
ψ

)
= i

η

µ0
Bzλr.

8S. Weinberg, Journal of Mathematical Physics 8, 614–641 (1967).
16 / 21

https://doi.org/10.1063/1.1705255


Beam Mode

The reduced models are sufficient to describe the instability.

EV calculations of
growth rates and
frequencies of the beam
mode with m = 1 agree
between all three models.

The ability to neglect v
suggests that the
dimensionless number of
importance is something
other than the Lundquist
number, S.( maybe
acrµ0/η)
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Beam Mode

Radial profiles of reduced model eigenfunctions give some
insight.
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The radial structure is localized
within a region of width r̃ around
the origin.

The location of r̃ seems to be
determined by a resonance of
Re{ω}+ crF (r̃) = 0.
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Beam Mode

Eigenvalue calculations from the 1D code observe the same
mode structure and growth rates as in the NIMROD calculation.

br r
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Conclusions

Conclusions: Linear simulations have revealed an effect of RE
current on resistive MHD instabilities.

Prior analytic and computational results have shown that the linear behavior tearing
and resistive kink modes are affected by the presence of runaway electron current.

In a cylindrical (2, 1) tearing mode case, NIMROD and Eigenvalue calculations agree
with published results for η/µ0 ≲ 104.

For η/µ0 > 104, there is a distinct, faster growing mode that is associated with the
presence of the RE beam.

The form of the reduced model suggests it is related to the resistive hose instability.
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Conclusions
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At large resistivity, eigenvalues scale with η the same way
observed in the MHD simulation in the high-η regime.

ω > γ for all η values for this
mode

In the tearing mode, ω ≲ γ at
low η.

The shaded region indicates
where the MHD tearing mode
growth rates would be larger
for this equilibrium.
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