Linear Stability of a Fluid Runaway Electron Beam

A. P. Sainterme¹, C. R. Sovinec¹

¹University of Wisconsin - Madison

PPPL Workshop on the Theory and Simulation of Disruptions, July 20th, 2023

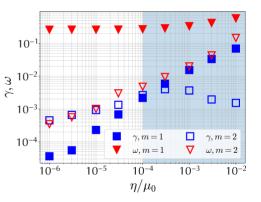
Work supported by the US DOE through grant DE-SC00180001

Preview

- Numerical analysis of the linearzied MHD+fluid runaway electron(RE) equations in cylindrical geometry was performed.
- Resistivity scaling of linear growth rates for a tearing unstable equilibrium shows the fastest growing mode transitions from m = 2 to m = 1 at large resistivity.
- The mode is overstable, with $|\omega| \gg \gamma$.
- Preliminary analysis suggests a resistive hose-like instability^{ab}
- Dominance at high resistivity suggests the beam mode may be important in post-thermal quench tokamak scenarios.

^aM. N. Rosenbluth, Physics of Fluids **3**, 932–936 (1960).

^bS. Weinberg, Journal of Mathematical Physics **8**, 614–641 (1967).



Model

The fluid RE model augments the resistive MHD equations.

$$\frac{\partial n_r}{\partial t} + \boldsymbol{\nabla} \cdot (n_r \boldsymbol{u_r}) = S_D(\mathcal{E}_{\parallel}) + S_A(E_{\parallel}) + D_r \nabla^2 n_r, \qquad (1)$$

where n_r is the number density of runaways, S_D, S_A are sources, D_r is a numerical diffusion coefficient and

$$\mathcal{E}_{||} \equiv rac{E_{||}}{E_D}, \quad \boldsymbol{u_r} = -c_r \hat{\mathbf{b}} + rac{\boldsymbol{E} imes \boldsymbol{B}}{B^2}, \quad c_r = \text{const.} \gg v_{th,e}, v_A$$
 $E_D = rac{n_e e^3 \ln \Lambda}{4\pi\epsilon_0 T_e}.$

And a modified Ohm's law:

$$\boldsymbol{E} = -\boldsymbol{v} \times \boldsymbol{B} + \eta (\boldsymbol{J} - \boldsymbol{J}_r) \tag{2}$$

Mode

This model is useful for disruption modeling.

- Cai and Fu use a fluid model in the M3D code to consider runaways effect on the resistive internal kink 1
- Bandaru, et al use a fluid model including sourcing in JOREK to simulate RE beam termination in JET experiments.²
- Liu, et al have used M3D-C1 calculations to self-consistently simulate resistive kinks in post-disruption plasmas.³

¹H. Cai and G. Fu, Nuclear Fusion 55, 22001 (2015).

²V. Bandaru et al., Plasma Physics and Controlled Fusion **63**, 10.1088/1361-6587/abdbcf (2021). ³C. Liu et al., Plasma Physics and Controlled Fusion 63, 10.1088/1361-6587/ac2af8 (2021).

Model

In this work we consider the linearized equations around a $0-\beta$ equilibrium supported by runaway electron current.

Lowercase letter variables are perturbed quantities, capital letter variables are equilibrium quantities:

$$\partial_t n_r + \nabla \cdot (n_r U_r + N_r u_r) = 0, \quad U_r = -c_r \frac{B}{B}, \quad u_r = -c_r \frac{b_\perp}{B}$$

$$\rho \partial_t v = \mathbf{j} \times \mathbf{B} + \mathbf{J} \times \mathbf{b}, \quad \partial_t \mathbf{b} = -\nabla \times \mathbf{e}$$

$$\nabla \times \mathbf{b} = \mu_0 \mathbf{j},$$

$$\mathbf{e} = -\mathbf{v} \times \mathbf{B} + \eta \left(\mathbf{j} - \mathbf{j}_r\right)$$

$$\mathbf{j}_r = -e \left(n_r U_r + N_r u_r\right)$$

$$\nabla \cdot \mathbf{b} = 0$$

Uniform constant plasma density, ρ_{i} and uniform, constant resistivity η . No equilibrium flow: V = 0. $c_r > 0$ is the parallel speed of runaway electrons along magnetic field lines. Source terms and RE drift effects are neglected in this linear analysis.

Energetic particle beams in a background plasma are susceptible to long-wavelength instabilities.

The literature considers self-pinched beams of relativistic electrons moving through a resistive neutralizing background plasma. The fundamental instability picture is

- Perturbed particle orbits generate RE current.
- Eddy currents induced in the ohmic bulk plasma decay.
- The imperfect cancellation of the perturbed RE current by the ohmic plasma currents allows an overstable oscillation.

Some relevant key features of the analyses:

- Unstable modes are essentially transverse to the beam axis.
- The m = 1 is generally most unstable, and is referred to as the 'resistive hose' instability⁴
- The axial wavenumber, k is small.
- The perturbed motion of the background plasma is negligible (other than neutralizing the beam.)
- Growth rate is asymptotically linear in η in the small η regime

⁴M. N. Rosenbluth, Physics of Fluids **3**, 932–936 (1960), S. Weinberg, Journal of Mathematical Physics **5**, 1371–1386 (1964).

Instability requires only EM Field + RE current.

Low-frequency EM wave equation w/RE (, j_r ,) and Ohmic plasma currents σE :

$$\nabla \times \nabla \times E - \omega^2 E = -4\pi i \omega j_r - 4\pi i \omega \sigma E$$

How j_r is calculated determines physics fidelity for RE orbits: Rosenbluth uses relativistic kinetics: Fluid model assumes m = 0 $p/m \rightarrow c_r$:

$$\begin{split} \partial_t f_r + \frac{\boldsymbol{p} \cdot \nabla f}{\sqrt{1+p^2}} + \frac{e}{m} \left(\boldsymbol{E} - \frac{\boldsymbol{p} \times \boldsymbol{B}}{\sqrt{1+p^2}} \right) \cdot \nabla_{\boldsymbol{v}} f = 0, \qquad \boldsymbol{j}_r = \frac{ec_r n_r}{B} \boldsymbol{B}, \\ \boldsymbol{j}_r = -\frac{e}{m} \int \frac{\boldsymbol{p} f}{\sqrt{1+p^2}} d^3 p \qquad \qquad ec_r \partial_t n_r + \nabla \cdot \boldsymbol{j}_r = 0. \end{split}$$
RE's only move along *B*

MHD flow and details of RE physics are non-essential for instability.

$NIMROD^5$ finds time-dependent solutions of the linearized $MHD{+}RE$ equations

- NIMROD uses a Fourier representation of the axial direction in cylindrical geometry.
- Linear problems decouple harmonics: $f(r, \theta, z, t) \sim f(r, \theta, t) \exp(ikz)$, then time-evolution for each k from an arbitrary initial condition is computed.
- A high-order finite element representation is used in the r, θ plane.
- The equations are integrated in time with a semi-implicit scheme.

⁵C. Sovinec et al., J. Comp. Phys. 195, 355 (2004).

The linearized MHD+RE system is solved with NIMROD, and a 1D radial eigenvalue code.

- NIMROD representation: $f(r, \theta, z, t) \sim f(r, \theta, t) \exp(ikz)$.
- Eigenvalue code representation: $f(r, \theta, z, t) \sim f(r) \exp(ikz + m\theta i\omega t)$ NIMROD:
 - 2D finite element representation in $(R,Z)\mapsto (r,\theta)$
 - PDE IVP for $n_r, \boldsymbol{b}, \boldsymbol{v}$ given k
 - Solution tends to the most unstable mode as $t \to \infty$

Eigenvalue Code:

- Assumes cylindrical symmetry
- 1D finite element representation in \boldsymbol{r}
- ODE EVP for $n_r, \boldsymbol{b}, \boldsymbol{v}$ given k and m

Cylindrical equilibrium taken from Liu et. al^6 was used to benchmark implementation.

$$L = 20\pi, \ a = 1,$$

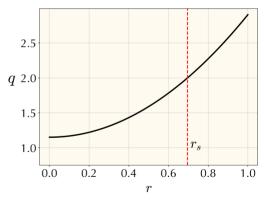
$$B_z(r = 0) = 1, \ \mu_0 \rho = 1,$$

$$c_r = 20, \ \beta = 0,$$

$$q(r) = 1.15(1 + (1.234r)^2)$$

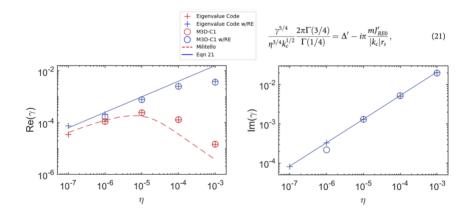
- All the equilibrium current is carried by runaways
- q(0) > 1
- In resistive MHD the most unstable mode is the m = 2 tearing mode

⁶C. Liu et al., Physics of Plasmas 27, 10.1063/5.0018559 (2020).



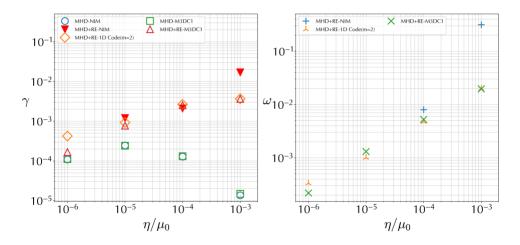
Benchmarking

Results from Liu, et al. compare an analytic growth rate scaling with linear M3D-C1 calculations for the (2,1) tearing mode.⁷

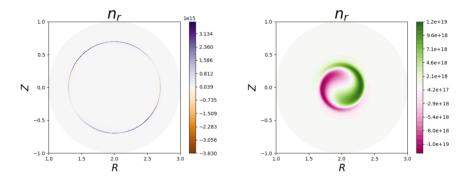


⁷C. Liu et al., Physics of Plasmas 27, 10.1063/5.0018559 (2020).

Both NIMROD and eigenvalue code reproduces published result on tearing with REs for small $\eta.$



Radial structure of beam mode differentiates it from either the kink or tearing mode



The eigenfunction of the tearing mode (left) at $S = 10^4$ is localized near the q = 2 rational surface with poloidal mode number m = 2. The fastest growing mode at $S = 10^2$, has m = 1, and is not localized near the rational surface.

Neglecting velocity perturbations does not affect the mode.

Set $v \sim 0$, and change variables to $\Lambda_r = \mu_0 ec_r N_r / B$, $\lambda_r = \mu_0 ec_r n_r / B$, then since $\partial_t B = 0$:

$$\partial_t \lambda_r - \frac{c_r}{B} \left(\boldsymbol{B} \cdot \nabla \lambda_r + \boldsymbol{\nabla} \cdot \left(\Lambda_r \boldsymbol{b}_\perp \right) \right) = 0, \tag{3}$$

$$\partial_t \boldsymbol{b} = \frac{\eta}{\mu_0} \boldsymbol{\nabla} \times (\lambda_r \boldsymbol{B} + \Lambda_r \boldsymbol{b}_\perp) - \frac{\eta}{\mu_0} \boldsymbol{\nabla} \times \boldsymbol{\nabla} \times \boldsymbol{b}.$$
 (4)

This simplified system was solved with the 1D eigenvalue code.

A further reduced model reveals that the instability is primarily driven by the gradient in the equilibrium runaway current.

Since the axial component $|b_z| \ll |b_r|, |b_\theta|$, simplify the system via $\boldsymbol{b} = \nabla \psi \times \hat{\boldsymbol{z}}$. Additionally, we neglect terms of order $r/R \sim B_\theta/B$, and assume $B_z \sim B_0 = \text{const.}$ (large-aspect ratio).

$$iF(r) \equiv \frac{B \cdot \nabla}{B},$$
$$(\omega + c_r F(r))\lambda_r = -c_r \frac{m\Lambda'_r}{r} \frac{\psi}{B},$$
$$\omega\psi - i\frac{\eta}{\mu_0} \left(\frac{1}{r}(r\psi')' - \frac{m^2}{r^2}\psi\right) = i\frac{\eta}{\mu_0}B_z\lambda_r.$$

The eigenvalues of this reduced system are also sought with a 1D spectral method.

This description of beam-plasma interaction is similar to resistive hose theory

The lowest order description of the beam problem given by Weinberg⁸ is

$$\frac{1}{r}(rE_{1z}')' - \frac{m^2}{r^2}E_{1,z} + \frac{4\pi i\omega}{c^2}E_{1z} = -\frac{4\pi i e v\omega}{c^2}n_1.$$

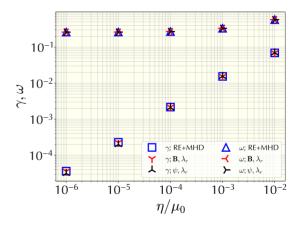
Where E_{1z} is the axial electric field, n_1 is the perturbed beam density, σ the bulk plasma conductivity, and v the axial beam velocity. This is equivalent to our equation for ψ after the substitutions $E_{1z} = i\omega\psi$, $4\pi\omega\sigma/c^2 \rightarrow \mu_0/\eta$, $4\pi/c^2(evn_r) \rightarrow B_z\lambda_r$:

$$\omega \psi - i \frac{\eta}{\mu_0} \left(\frac{1}{r} (r\psi')' - \frac{m^2}{r^2} \psi \right) = i \frac{\eta}{\mu_0} B_z \lambda_r.$$

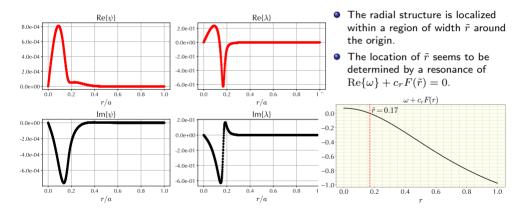
⁸S. Weinberg, Journal of Mathematical Physics 8, 614–641 (1967).

The reduced models are sufficient to describe the instability.

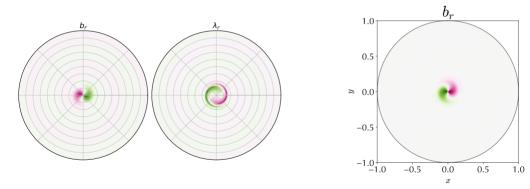
- EV calculations of growth rates and frequencies of the beam mode with m = 1 agree between all three models.
- The ability to neglect v suggests that the dimensionless number of importance is something other than the Lundquist number, S.(maybe ac_rμ₀/η)



Radial profiles of reduced model eigenfunctions give some insight.



Eigenvalue calculations from the 1D code observe the same mode structure and growth rates as in the NIMROD calculation.



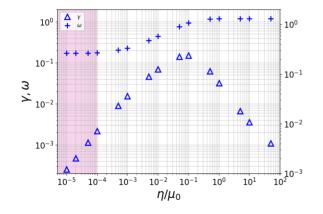
Conclusions: Linear simulations have revealed an effect of RE current on resistive MHD instabilities.

- Prior analytic and computational results have shown that the linear behavior tearing and resistive kink modes are affected by the presence of runaway electron current.
- In a cylindrical (2,1) tearing mode case, NIMROD and Eigenvalue calculations agree with published results for $\eta/\mu_0 \lesssim 10^4.$
- For $\eta/\mu_0 > 10^4$, there is a distinct, faster growing mode that is associated with the presence of the RE beam.
- The form of the reduced model suggests it is related to the resistive hose instability.

Acknowledgments

Work supported by the US DOE through grant DE-SC00180001 Special thanks to Dr. Liu for providing data for the tearing mode test case.

At large resistivity, eigenvalues scale with η the same way observed in the MHD simulation in the high- η regime.



- $\omega > \gamma$ for all η values for this mode
- In the tearing mode, $\omega \lesssim \gamma$ at low η .
- The shaded region indicates where the MHD tearing mode growth rates would be larger for this equilibrium.