Radiofrequency emission by runaway electrons in FTU

P. Buratti¹, W. Bin², A. Cardinali¹, D. Carnevale³, C. Castaldo¹, O. D'Arcangelo¹, F. Napoli¹, G.L. Ravera¹, A. Selce¹, L. Panaccione¹ and FTU Team⁴

¹ENEA, Fusion and Nuclear Safety Department, C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Roma) Italy. ²ISTP-CNR, via R. Cozzi 53, 20125 Milano, Italy. ³Dip. di Ing. Civile ed Informatica, Università di Roma Tor Vergata, Italy. ⁴See the author list of G. Pucella et al., Nucl. Fusion 59, 112015 (2019).

1. Motivation

- Collective interactions with plasma waves can enhance RE pitch-angle scattering, leading to larger synchrotron losses, which in turn:
- raise the critical electric field for avalanche multiplication and reduce the maximum energy of RE.
- Emission of radio waves by runaway electrons has been studied on FTU tokamak under different plasma regimes, including:
- low-density hot plasmas,
- pellet-fueled plasmas,
- post-disruption RE beams.
- Buratti et al 2021 PPCF https://doi.org/10.1088/1361-6587/ac138c
- The interest of post-disruption RE beams is obvious.
- Scenarios with hot, low-density background plasma are of interest for ITER startup.

2. Wave diagnostics

 Radio waves generated by coupling with plasma waves were collected by a wideband (log-periodic) antenna placed outside the vacuum vessel, in front of the exit of a vertical port closed by a dielectric window.

- · The cutoff frequency due to propagation in the port was about 400 MHz.
- The antenna signal was acquired by a NI PXIe-5186 fast digitizer, with 5 GHz analog bandwidth and 8-bit resolution.

3. Wave detection in hot low-density plasmas

4. Wave detection in hot low-density plasmas (Fig. 1)

- Radiofrequency emissions have been detected in all examined discharges in which significant RE signatures, in particular HXR emission, were present.
- The background plasma temperature increases from 1.1 to 2.9 keV during the fast digitizer acquisition interval shown in Fig. 1.
- The amplitude of radio emission is estimated by moving RMS on 1 microsecond intervals.
- Radio emission is intermittent.
- Intermittency is common to all examined pulses.
- There is no correlation between radio bursts timing and MHD activities.
- The first radio burst appears during current ramp-up (t = 0.114 s), showing that kinetic instabilities influence RE dynamics

already in the formation phase.

CISTP ENER

5. Shapes of radiofrequency bursts

6. Shapes of radiofrequency bursts (Fig. 2)

- RF signals normalized to digitizer saturation amplitude are shown by traces in grey.
- The amplitude estimated by moving RMS on 100 ns intervals is shown in red.
- The fraction of raw datapoints which saturate the digitizer dynamic range is shown in dashed green.
- The radio burst in the top frame grows exponentially for 5 microseconds, with a growth rate of about 10⁶ /s;
- the guiescent period elapsed from the previous burst is 1.27 ms, which exceeds the growth rate by three orders of magnitude.
- The case with high RE content has very sharp leading edge and complex tail structure, with ringing oscillations and a second sharp rising front.
- The case with low RE content (bottom frame) has low amplitude and much smaller (10⁵ /s) growth rate.

8. Correlation with ECE and RE losses (Fig. 3)

- Rapid variations of the electron distribution function are spotted out from suprathermal ECE and Cherenkov probe fast channels.
- Radio bursts are accompanied in most cases by upwards steps of ECE and by bursts of the Cherenkov signal, as exemplified in figure 3.
- · Both observations indicate enhanced pitch angle scattering, in fact rapidly increasing suprathermal ECE (on time scales shorter than RE acceleration time) is a sign of increasing RE perpendicular momentum, while bursts of the Cherenkov signal reveal temporarily enhanced RE losses.
- Only a small fraction of the RE population is ejected at each event, in fact the ECE signal remains strongly suprathermal all the time.

CISTP ENEX

COISTP SINCE EVEN

9. Spectral broadening

10. Spectral broadening (Fig. 4)

- Welch's power spectral densities (on 20 intervals of 256 points). from pulse 43647 at B = 4 T, at times shown by vertical dashed lines in Fig. 2c.
- The dotted line is a spectrum taken just before a radio burst (representative of low emission between bursts).
- The dashed line shows a PSD during the early growth phase, when amplitude is 13% of the maximum one: Significant changes occur in a relatively narrow range, from 0.6 to 1.7 GHz, as emphasized by the lighter shading in Fig. 4.
- · The blue solid line shows the PSD at a time when amplitude is 60% of the maximum one: There is substantial broadening with respect to the early growth phase, as highlighted by the darker shading.
- Spectral broadening occurring on a time scale comparable to the amplitude e-folding time is indicative of strongly nonlinear wave coupling, a possible mechanism for rapid growth after relatively long stationary periods. CISTP **ENER**

11. Coherent emissions

12. Coherent emissions (Fig. 5)

- There is multiline excitation at first.
- followed by broadband emission periods alternating with singleline spectra.
- · the ECE signal slope only increases during periods of broadband emission.

- Another instance of multiline
- excitation.
- · Coherent lines appear in some cases before a radio burst. Line spacing is 31 MHz = ion cyclotron frequency at the low field side plasma periphery.
- Coherent emissions are also present during current ramp-up.
- Substantial work on their interpretation is in progress.

COUNTY LANGUAGE AND LANGUAGE AN

13. Pellet injection

14. Pellet injection (Fig. 7)

- Pellet injection on a target with large RE content.
- Intense radiofrequency bursts superposed to a continuous emission level are present before pellet injection, panel (e).
- The first pellet (t=0.304) produces a dense (8.3 10¹⁹/m³), warm (0.5 keV) background plasma
- A substantial RE population survives pellet injection, indeed total HXR emission remains high, panel (c).
- Radio bursts disappear after pellet injection.
- The baseline emission decreases by a fator 5 within 0.9 ms after pellet injection.
- The second pellet provokes a disruption; the background plasma becomes very cold.
- Radio emission temporarily disappears during this phase, but see figure 8 below.

©ISTP ENER

15. Post-disruption RE beam

16. Post-disruption RE beam (Fig. 8)

- Radio emission temporarily disappears after disruptions
- Strong collisional wave damping due to plasma cooling can justify the extinction of kinetic instabilities.
- However, such quiescent phases are often terminated by sequences of violent instabilities;
- this happens if the RE beam lasts long enough (> 0.2 s typical) under the action of position-controlled current ramp-down.

CISTP ENER

17. Anomalous Doppler resonances

only for γ > 30, i.e. energy > 15 MeV.

CISTP ENEX

18. Conclusions and perspectives

- Radio emission by RE electrons was measured on FTU, both on low-density hot plasmas and on post-disruption RE beams.
- Explored conditions included $\omega_{Ce}/\omega_{De} > 3$, in the ballpark of ITER start-up values.
- Further FTU data analysis will be submitted for publication before the end of 2021.

Collaborations

- COMPASS: A collaboration with IPP-CAS (Prague) started in 2020. A large number of RE instabilities were measured and data are now under analysis.
- TCV: Preliminary test of RF detection by ex-vessel antennas performed in 2020. Measurements with in-vessel antenna, already agreed with the TCV team, should be carried out between the end of 2021 and the beginning of 2022.

