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Outline

 Motivation & objective

 Role of ELM detection in DECAF 

 ELM detection algorithm

 ELM detection case-studies 

 Summary, active and future work
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ELMs can potentially trigger or seed disruption-capable modes

 The Disruption Event Characterization and Forecasting 
(DECAF) code works to resolve, characterize, forecast, and 
glean physics insight to event-chains that result in disruptions 
by studying large, cross-machine databases[1]

 a favorable formalism to study possible seeding of detrimental 
instabilities

 Not typically directly disruptive, but ELMs have long been thought to 
be a potential trigger for more detrimental plasma instabilities[2,3]

 Recent progress in theory proposes possible mechanism for ELM 
triggering of NTMs[2,5]

 The potential of ELMs to seed modes that can result in plasma 
termination interests DECAF in a high-fidelity ELM-detection 
capability
 gives rise to DECAF ability to study correlation of ELMs with disruptive plasma 

events 
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Goal: Reliably detect and characterize ELMs in DECAF

 Reliable ELM detection and characterization requires 
distinguishing between events that may share diagnostic 
signal characteristics
 A high time-resolution diagnostic to detect edge energy transients is 

the D⍺ diagnostic
 E(dge)LM: loss of pedestal energy  Expect ELMs to exhibit edge-

localized profile drops following ELM crash 
 Strong D⍺ emission transients w/out edge-localized profile changes 

through mode dynamics still useful – info passed to other DECAF 
events (NTM, LTM, RWM, etc.)

Figure 1:
ELM event precursor 
oscillations and 
subsequent filament 
ejection in NSTX 
(Sechrest et al)

Figure 2:
Pressure profile before 
ELM crash and its 
recovery
(Igochine et al)
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ELM Identification Algorithm

D⍺ emission transient

ΔTe, Δne edge localized  Global ΔTe or otherwise not 
edge-localized ΔTe

ELM

Not an ELM

If still in H-mode, expect 
additional ELMs to follow

In L-modeIn dithering H-
modeIn H-mode

Relatively large ∂Slow 
Neutrons/∂t drop

Send compiled D⍺ spike info to 
other DECAF events 
 NTM? RWM? LTM?

ELM

Te ↓ in core
Te ↓ in edge

 GLOBAL decrease

Key:  :  Implemented

:  Under Development

Te 0 in core
Te ↓ in edge

 Edge-localized decrease
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ELM Identification Results

 Demonstrate ELM identification capability and characteristics 
by examining performance on several shots
 2 NSTX discharges with bona fide ELMs[3]

 2 NSTX discharges with D⍺ emission signatures similar to that of ELMs
 A representative KSTAR shot

 Examine plasma diagnostic signals through mode dynamics 
to determine physical nature of strong D⍺ emission transient 
(if not ELM, what is source of the emission?)
 D⍺

 Slow neutrons
 Magnetic pick-up coils
 Te profile
 RWM and locked mode sensors
 Plasma stored energy (Wtot)
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DECAF ELM detection capability classifies D⍺ spikes as 
global or edge-local based on plasma signals

1/4
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ELMs are detected when D⍺ spikes supported by edge-
localized plasma signals

Te ↑ in core 
Te ↓ in pedestal

 CORE increase
 EDGE decrease

• Transient low-f magnetics 
• Edge-localized Te drop
• No apparent ΔBr or ΔBp
•  ELM

2/4
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• Transient low-f magnetics & very small slow neutrons change
• Edge-localized Te drop 

Albeit w/ some edge-profile recovery, but note Te 10ms after spike
• No major ΔBr or ΔBp
•  ELM

Te ↑ in core
Te ↓ in pedestal

 CORE increase
 EDGE decrease

ELMs are detected when D⍺ spikes supported by edge-
localized plasma signals

3/4
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ELMs are detected when D⍺ spikes supported by edge-
localized plasma signals

• Transient low-f magnetics 
• Edge-localized Te drop 
• No apparent ΔBr or ΔBp
•  ELM

Te ~0 in core 
Te ↓ in pedestal

 EDGE localized

Te ↑ in core
Te ↓ in pedestal

 CORE increase
 EDGE decrease

• Transient low-f magnetics 
• Edge-localized Te drop 

Albeit w/ some edge-profile recovery, but 
Te 10ms after spike

• Very small slow neutrons drop (≾ 5%)
• No apparent ΔBr or ΔBp

•  ELM (+ potential other activity)

4/4
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DECAF ELM detector computes D⍺ spike start- and end- times
1/3
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Te 0 in core 
Te ↓ in pedestal

 EDGE localized 

ELMs are detected when D⍺ spikes supported by edge-
localized plasma signals

Te 0 in core 
Te ↓ in edge

 EDGE localized 

• Transient influence on low-f magnetics
• Edge-localized Te drop 
• Very small Slow Neutrons change (< 5%)
• No apparent ΔBr or ΔBp
•  ELM

• Transient low-f magnetics
• Edge-localized Te drop 
• Very small Slow Neutrons change (< 5%)
• Small ΔBr and ΔBp
•  ELM

• Transient low-f magnetics
• Edge + Core Te drop 
• Very small Slow Neutrons change (< 5%)
• Small ΔBr and ΔBp
•  ELM

Te ↓ in core 
Te ↓ in pedestal

 CORE decreases 
 EDGE decreases 

2/3
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DECAF ELM detector discerns difference b/w global and edge-localized 
effects, and can provide D⍺ processing to other DECAF events

• Te drop is global, Slow Neutrons exhibit major drop
 D⍺ info now to be passed to other DECAF events 

• Low-f mode is born and quickly locks (w/in 15ms)
• Large Bp-U increase 
• Wtot  0 immediately with D⍺ spike
•  Probable LTM

3/3
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Narrow-peaked, quasi-periodic D⍺ measurements may appear to be 
ELMs but DECAF detects global plasma profile changes 1/3
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DECAF ELM detector filters out events not supported by edge-
localized plasma signals despite ELM-characteristic D⍺

Te ↓ in core
Te ↓ in edge

 GLOBAL decrease

2/3

• Global Te drop, Slow Neutrons exhibit major drop
 D⍺ info now to be passed to other DECAF 
events 

• High frequency, large amplitude low-f mode is born 
(NTM magnetic island)

•  Probable NTM

Te ↓ in core
Te ↓ in edge

 GLOBAL decrease

• Global Te drop, Slow Neutrons exhibit major drop
 D⍺ info now to be passed to other DECAF 
events 

• High frequency, large-amplitude low-f mode is 
born (NTM magnetic island)

•  Probable NTM
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DECAF ELM detector filters out events not supported by edge-
localized plasma signals despite ELM-characteristic D⍺

3/3

Te ↓ in core
Te ↑ in edge

 GLOBAL decrease

• Global Te drop, Slow Neutrons & Wtot exhibit 
large drop

 D⍺ info now to be passed to other DECAF 
events 

• Low frequency low-f mode locks
• Large Br-U increase 
•  Probable LTM

Te ↓ in core
Te ↓ in edge

 GLOBAL decrease

• Global Te drop, Slow Neutrons & Wtot exhibit minor 
drop

 D⍺ info now to be passed to other DECAF events 
• Br-U increase 
•  Possible LTM
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Narrow-peaked, semi-regular D⍺ emission transients *look* 
like ELMing, but DECAF ELM detector claims otherwise

1/4
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Te ↓ in core
Te ↓ in edge

 GLOBAL decrease

Te profile provides critical support to ELM-detection by filtering 
events w/ D⍺ spike-ing but no edge-localized profile change 2/4

Te 0-↓ in core
Te ↓ in edge

 GLOBAL decrease

• Global Te drop, large slow 
neutrons drop

 D⍺ info now to be passed to 
other DECAF events 

• High frequency, large-amplitude 
low-f mode (NTM magnetic island) 
is either born or grows out of 
preceding, mostly-damped NTM

•  Probable NTM

• Global Te drop, Slow Neutrons (& 
WMHD) exhibit catastrophic drop

 D⍺ info now to be passed to 
other DECAF events

• Low frequency, large-amplitude low-f
mode is born (NTM magnetic island)

•  Probable NTM
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Te ↓ in core
Te ↓ in edge

 GLOBAL decrease

Te profile provides critical support to ELM-detection by filtering 
events w/ D⍺ spike-ing but no edge-localized profile change 3/4

Te 0-↓ in core
Te ↓ in edge

 GLOBAL decrease

• Global Te drop, large slow neutrons drop (~10%)
 D⍺ info now to be passed to other DECAF 
events 

• Br & Bp increase (both BR-L and BR-U, but only 
Bp-L) 

•  Probable Metastable RWM

• Global Te drop, large drop in slow neutrons 
 D⍺ info now to be passed to other 
DECAF events 

• Br & Bp increase (both BR-L and BR-U, but 
only Bp-L) 

• Probable Metastable RWM
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Te profile provides critical support to ELM-detection by filtering 
events w/ D⍺ spike-ing but no edge-localized profile change 4/4

Te ↓ in core
Te ↓ in edge

 GLOBAL decrease

• Global Te drop, Slow Neutrons (& 
Wtot) exhibit catastrophic drop

 D⍺ info now to be passed to 
other DECAF events

• Low frequency, large-amplitude low-f
mode seems to be born (NTM 
magnetic island) and locks w/in 15ms

• Strong RWM sensor (BR, Bp) signal 
increase

•  Possible RWM or LTM
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DECAF ELM detection capability is machine-general

High frequency, 
long-duration 
ELMing on 
KSTAR

Robust ELM-
detection

reliable ELM 
detection even 
for high-
frequency, long-
duration ELMing
periods (KSTAR)
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Summary, Active and Future Development

 Summary
 Results from DECAF’s ELM event demonstrates its ability to reliably detect 

ELMs with D⍺, Te, and slow neutrons as inputs
• DECAF has access to many machines – ELM-event can be generally applied (e.g. KSTAR)

 Supports other DECAF events with D⍺ emission transient processing

 Active work
 Studying extent of correlation of ELMs with rotating MHD modes 

 Acknowledgements
 This work was supported by US DoE grant DE-SC0016614.

• Recent theory predicts MHD 
transients (e.g. ELMs) can abruptly 
induce Er, radially-localized torque, 
and flows that reduce transient 
magnetic perturbation frequency 
can allow metastable NTM to grow (as 
req’d by MRE)

J.D. Callen et al, “How are NTMs seeded”, APS-DPP BP10.00028 (2019) 
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