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Thermal quench transport is critical issue in tokamak disruption problem

. . . . . F. C. Schuller, PPCF (1995)
1 The plasma disruption is a major challenge of tokamak fusion plasma
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Disruptive MHD instabilities

- Vertical displacement events

- Locked Mode = magnetic islands grow & overlap
- Break magnetic surface = stochastic magnetic fields

Duration of TQ ~ a few milliseconds = huge heat load to PFCs

‘ What are plasma transport mechanisms including kinetic electron effects
in the presence of open stochastic magnetic field lines?

R. Sweeney, NF (2018)

This study focus on the “3-D kinetic effects” of the plasma transport in “open” stochastic field lines

d Previous theoretical studies on plasma transport in stochastic magnetic fields

[Stochastic diffusion process

Parallel transport + collisional cross-field decorrelation [Rechester& Rosenbluth (PRL'1978), Krommes (JPP'1983)]

* VB and curvature drift effects due to the toroidal geometry [Mynick (1979, 1980))

* Ambipolar electric fields for quasi-neutrality [Harvey (PRL"1980)]

ﬁ Stochastic fields are typically characterized by 0-D or 1-D diffusion coefficient

1 Key effects essential for understanding the Thermal Quench physics [lopen stochastic field lines]
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* Open stochastic magnetic field lines connecting to the wall
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- significant particle loss to the wall

* 3-D topology of the stochastic magnetic field lines

* 3-D ambipolar electric fields for quasi-neutrality of the plasma

- dynamics of trapped electrons (magnetic mirror + electric potential well) LN AN
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open field line #2:7%
J. Wesson, Tokamaks (2011)

- cross-field decorrelation by E | X B transport and mixing effects

New 3-D kinetic capabilities have been developed to study collisionless mechanisms of
the plasma transport in open stochastic fields

L  GTS (Gyrokinetic Tokamak Simulation)
* PPPL-based code led by W. Wang

» A global gyrokinetic particle simulation code to study
micro turbulence physics of the fusion plasma in tokamaks

* New 3-D kinetic capabilities have been developed to study the plasma
transport in the stochastic open magnetic field lines

* Focus on electrostatic plasma responses in the collisionless limit
(high temperature plasma & short connection length)

L Step-by-Step approach

1. High-resolution vacuum field analysis = 3-D magnetic topology
2. Test particle simulation = Magnetically passing and trapped electrons
3. Ambipolar E| effect - Quasi-neutrality & additional electron trapping by ambipolar potential

4. E, %X B effect = Key cross-field decorrelation mechanism

Prescribed 6B applied on “Cyclone base case” Equilibrium

=  Equilibrium magnetic configuration (a) (b)
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Connection Length and Magnetic Mirror Ratio

= Open field line #1

Magnetic well
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ﬁ L. and Mg depend on the position
Need to understand 3-D topology

Connection length of open field lines

1-D averaged Connection Length 3-D Connection Length

T, /A
104 i} (m) ) T
€ Long L.(> 100m) | -
= 103 ’ﬂ'!‘2 r i ] 1'{'!2
E ¢
'qu > 0 Q‘ B . iR e n 2 s 0
o* 100 m)
mln(‘;,;)‘\\ -wl2 | éﬂ /2
10° o 101 3
0.4 o8 08 " o4 w 0.8 " 0.4 0.6 0.8
Vbt r

Connection Length L. determines passing electron dynamics

Along shorter L line = Shorter confinement time
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Electrons can be “trapped” by 3-D magnetic mirror effects

“3-D magnetic topology” well explains the dynamics of test electron particles

Most electrons get trapped by the ambipolar potential for the quasi-neutrality

Effective mirror ratio M .¢¢ determines passing-trapping condition
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Vacuum Field Analysis

Confinement of passing & trapped electrons
1018 @/ = 0.652

Test particle simulation
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* Higher passing electron density at longer L. region

Trapped electron density (short confinement time)

Trapped particle fraction
Ftra.p @ C =0
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* Magnetically trapped electrons at the magnetic hills
(very long confinement time)

. However, real plasma dynamics requires
consistent coupling between electrons and ions
through electric fields

Test Particle Simulation (no coupling)

Consistent coupling between electrons and ions through E field

Electrostatic Potential
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Accelerating ions

Decelerating electrons
(trapping of electrons)

In test particle simulation, electron density drop is 60 times faster than ion collapse (v&,/v}, = /m;/m.~60)

The positive ambipolar potential (e®~T,) builds up for the ambipolar transports (I'; ~ I',)
= Impedes the fast electron loss until it matches with the ion loss

Most electrons get trapped by ambipolar electric fields to maintain the quasi-neutrality (n; ~ n,)
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High-u electrons at the magnetic hill can exit to the wall

At magnetic well regions (Mg > 1)
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At the magnetic hill region (M ¢ < 1), high-p electrons can be passing particles

These kinetic effects on passing-trapped electrons must be considered to understand electron heat transport

Ambipolar potential has a 3-D structure correlated with the connection length

(1 Parallel dynamics of plasma transport

1. Ambipolar potential builds-up

at electron thermal speeds

Plasma collapses at ion sound speeds
- Ambipolar transport
- Lower density at shorter L. regions

3-D positive ambipolar potential correlates
with the connection length structure

* At shorter L, region
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ﬁ Strong E | is produced between
longer and shorter L, regions

ExB vortices mix the plasma across the stochastic field lines

Plasma temporal evolution w/o and with ExB transport
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- Deform the plasma structure

- Enhance radial transport

Strong E | (by parallel dynamics)

Turbulent ExB mixing across field lines

- Collisionless detrapping of electrons
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ExB contributes considerable amounts of electron fluxes ExB mixing enhances collisionless detrapping of high-u electron ExB transport and mixing play crucial roles in decreasing electron temperature steadily
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= | | | 2 trapped passing J Trapped particle transport is critical for determining the electron thermal transport and temperature
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0.6 * [(E, + E ) case shows that the electron temperature steadily decrease in the time scale of milliseconds

* ExB transport contributes about (30"40)% of particle flux and (50"60)% of heat flux o4 ‘ ExB carries and mixes the electrons radially and poloidally - High-p trapped electrons can be detrapped by ExB mixing and toroidal precession

'3*;} 14 ExB mixing enhances the collisionless detrapping in average 15 - At /1, = 0.7 surface, the temperature decreasing rate is about (-500 e\//ms) 16
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= Collisionless plasma transport in open stochastic magnetic fields has been studied
based on first-principles-based calculations

= A new type of analysis on the 3-D topology of magnetic potential in the stochastic layer

- Effective magnetic mirror ratio: magnetic wells and magnetic hills

= Ambipolar electric fields for the quasi-neutrality play critical roles in determining plasma transport

L\ makes ambipolar plasma transport that propagates along stochastic fields at ion sound speed

L\ and 3-D magnetic mirror ratio determines the passing-trapped condition of electrons

L', » B radial transport is considerable (particularly for the trapped electrons)

L', » B mixing across the stochastic fields enhances collisionless detrapping of high-u trapped electrons

We observed a considerable degradation of the global plasma profile and electron temperature
in the timescale of milliseconds that agrees with the typical time scale of the thermal quench

- Collisional transports
- Recycling particles
- More realistic plasma profile and magnetic perturbations

Future works
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