Scenario adaptive disruption prediction study for next generation burning-plasma tokamaks
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Scenario adaptive strategy provide possible solution for ITER DMS trigger development

Using data from existing machines to simulate the low/high performance phases on ITER

. Developinga reliable DMS trigger for ITER’s high performance operation using limited high performance data
from itself is a key for the success of ITER [1-3].

. Data-driven disruption predictors trained on abundantlow performance discharges work poorly on the high
performance regime of the same tokamak, which is a consequence of the distinct distributions of the tightly
correlated signals related to disruptionsin these two regimes.

. Matching operational parametersamong devices can greatly improve cross machine accuracy.

» Highlight the importance of developing ITER baseline scenario on existing tokamaks.

. Combining low performance data from the target with high performance data from other machinesgives
good performance on the high performance regime of the target machine.

» A possible strategy for ITER DMS trigger development.
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. Select three operational parameters: B, qss and input power (P;,) that are importantto tokamak operation but
less significantto our disruption predictor and calculate their flattop averaged values! for each shot in our
databases(C-Mod, DIII-D and EAST) [2, 4].

. Choose performance cutoff thresholds for all three parameters (averaged values) and select various high/low

performance (high/low P;,, high/low B, low/high qq5) datasets on three machines.
B, [1)

o 0.5 1 15 2 5 3 5 4 4.5 5 55
1

IC = 2w, in H IC = H min in He

Performance cutoff threshold of B, P,, and gy on three devices :: . u :“
B, low/high P, low/high dgs low/high B h' *f /3? as
cutoff cutoff (MW) cutoff o 3| gL A 82 il
g 9.0 -:; E > Jos T
C-Mod | <0.15 | >0.25 | <1.0 >3.0 | <4.0 | >4.6 i v || := srowey| 1** &
- “l inHe l i ’d"/ I'\.'IBIlE "
DIlI-D <0.60 >0.80 <3.5 >T:5 <4.5 | >5.0 wl d 0% 5 s7okev| |,
W i e A
EAST | <055 | >0.75 | <0.6 | >3.0 | <5.0 | >6.0 - / | [ THIE
15 | | : IC + He*min in He| g,

o o5 1 L5 2 3.5 4 4.5 5 55

2.5 3
B, [1]

Staged approach of ITER performance ramp up [5]
[4] Montes K. J. etal. 2019 Nucl. Fusion 59 096015
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For B, and Py, average is only taken over the flattop period when the heating is on.

Distribution of three parameters on each device
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Unsupervised clustering reveals clear separation between low/high performance regime

Hybrid Deep Learning (HDL) Predictor [2]: a fast, powerful and general model for disruption prediction

Cross-machine study: explore data-efficient disruption prediction on new devices.

. An orthogonal linear transformation called Principal Component Analysis (PCA) [6] is applied to all three
databasesto facilitate the visualization of plasma dataina 2-D plane

. In all clustering plots, both x and y axes are linear combinationsof 12 training features. Each magenta point
represent a 10-step plasma sequence randomlysampled from the flattop of a high performance shot while
each cyan pointrepresent a 10-step sequence randomlysampled from the flattop of a low performance shot.
The coloringis done a posteriori.

. PCA clustering plots show limiting the ranges of a few parameters can greatly change distributionsof other
signals related to disruption prediction and makes clear distinction between low performance and high
performance plasmas which suggests the tight correlation between disruption related signals.

e o i - L -‘.'ff‘;

C-Mod DII-D

[6] Pearson K. 1901 Philosophical Magazine. 2 (11): 559-572

. Consist of an advanced deep neural net converts an input plasma sequence to a predicted label and a shot-by-
shot testing scheme to simulate alarms triggered in the Plasma Control System (PCS) [2].

. Achieve state of the art performance (benchmark against optimized Random Forest (RF) predictor) on all three
devices with limited hyperparametertuning, suitable for cross machine study.
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* Develop a reliable predictorthat work on high-performance operational regime using low performance
operational datais strongly desirable for ITER [5].

* A “train-on-LP-data” strategy is to train a predictor using low performance datafrom our target machine and
hope it works for high performance operation.

* We have designed numerical experiments to investigate whether this strategy works. If not, how to improve this
using data from other devices.

» Setup:two machines as ‘existing/other machines’, with the third one chosen as a ‘new/target device’.

* Performance metric: success rate vs. false alarm curves [7] at 50ms before the current quench.

» All following qualitative conclusions are machine-independent (only show the DIII-D case which means DIII-D is
the new device while C-Mod and EAST are existing machines. In addition, the test set is alwaysDIII-D high B,
high P,, and low g4 dataset unless otherwise stated.).

[7] Bradley A. P. 1997 Pattern Recognition, 30, 1145-1159

Only using low performance shot doesn’t work on high performance regime

Improve the “train-on-LP-data” strategy by adding data from other machines

* Trainon few hundreds low performance new device shots works badly on new device high performance regime.

* AlthoughP,,andB
low B

«or are not training features, predictors trained on high performance (with/out P, constraint)

«or discharges perform poorly for the high performance high B, discharges.

* Signalsrelated to disruption prediction are closely correlated. Although the chosen physics-based signals (B,, P;,,
dgs) do not directly contribute much to the power of model, limiting their range can deeply affect the
distributionsof more importantsignals and hence change the prediction results.
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ROC curves from the new device (DIII-D) test set using only new device data.

* Trainingon “matched” data from existing machines greatly outperforms the unmatched data, and progressively
matching more parameters continuously improves the target performance. Therefore, developing ITER baseline
scenario discharges on existing tokamaks, and training predictors on these, should greatly improve disruption
prediction on ITER itself.

* Inthe absence of high performance data from the new device, combining “matched” high performance datafrom
existing machines with low performance data from the new device gives the best prediction accuracy for the high
performance regime of the target new device.
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1. Preliminary data exploration onthree datasets finds limiting the ranges of three chosen parametersclearly
separates the resulting low/high performance plasmas which suggests the close correlation between disruption
related parameters.

2. Data-drivendisruption predictors trained on abundantlow performance discharges work poorly on the high
performance regime of the same tokamak, which is a consequence of the distinct distributionsof the tightly
correlated signals related to disruptions in these two regimes.

3. Matchingoperational parametersamong tokamaks strongly improves cross-machine accuracy which implies
our model learns from the dimensionless physics scalings of these parameters and confirms the validity of
these scalings for disruption prediction from the data-driven perspective.

4, Suitable predictivity of the high performance regime for the target machine can be achieved by combining low
performance data from the target with high performance data from other machines.

5. Possible strategy for ITER data-driven DMS trigger: combine low performance ITER data with ITER baseline
discharges from existing machines to meet the initial requirement. Add high performance ITER data and further
boost the performance to achieve long term requirement.
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