MHD modeling in support of thermal
guench and runaway electron
mitigation for ITER

V.A. Izzo
Theory and Simulation of Disruptions Workshop
PPPL, 18 July 2013

with contributions from:
J.G. Wesley, E.M. Hollmann, R.S. Granetz, G.M. Olynyk, J. Yu,
A.N. James

Alcator

DII~D cpmod UCSan Diego

SSSSSSSS




This talk concerns mitigated disruptions (aka “Rapid

Shutdowns”)

Part 1. Radiative heat loads during a mitigated TQ:
Toroidal (and poloidal) radiation peaking

- Spatial symmetry of radiated power is not just a function of
the impurity distribution

Part 2: Runaway electron confinement during a
mitigated TQ

- Evidence suggest that deconfinement by MHD fluctuations
will not be an effective strategy for ITER
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Part 1. Radiative heat loads during a mitigated TQ:
Toroidal (and poloidal) radiation peaking

- Spatial symmetry of radiated power is not just a function of
the impurity distribution
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NIMROD extended MHD code is combined with KPRAD

atomic physics code to model massive gas injection (MGl)

lonized Ne density

Beginning with

DIII-D
equilibrium,
impurities are
deposited as

neutrals KPRAD calculates
ionization, recombination
Neutral Ne density and radiation cooling

NIMROD calculates MHD
response to edge cooling,
diffuses and advects impurities

along with main ion species
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Case 1: Toroidally symmetric Ne injection on the low field

side (LFS)

Contours of injected neutral Ne density

Key results:

* MIHD activity during the
thermal quench (TQ)
produces rapid mixing of
impurities into the core

* Radiated power
asymmetry occurs even
with symmetric gas
injection due to the 1/1
mode
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Ne first diffuses slowly, then mixes rapidly when
MHD modes appear
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1/1 mode is primarily responsible for rapid

mixing

lonized Ne density (1.52 ms)

Ne pushed
into core by
1/1 mode on

this side
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eAssimilation efficiency: Fraction of
total Ne inside the separatrix

- Dominated by diffusion across the
separatrix

» Mixing efficiency: Fraction of Ne in
plasma that is inside 50% flux
surface

- Rises rapidly during TQ due to 1/1
mode flows
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DIII-D data illustrates rapid density rise caused by MGl-

induced reconnection event
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Hot core is expelled by the 1/1 mode at the
time of the TQ
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Radiated power spikes during TQ

P..q(GW)
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Radiation asymmetry occurs even with a

symmetric Ne source

Radiation is peaked
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flash during TQ and

1/1 mode responsible for both P

rad

rapid mixing of impurities

Mode convects particles from edge to core and heat from core to edge

Flow is .
aligned to pull Radiated power
impurities flash is
concentrated

into the core

where expelled

mainly on one (\"*. Particles :
side of the v\ _ hot core hits
e impurities at the

edge
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Cases 2 and 3: Toroidally peaked Ne injection on the

low field side (LFS)

Contours of injected neutral Ne density
21

Case 2: Source at 180° I’% 10 Case 3: Source at 0°

B

Key results: ° °
- Location of radiation toroidal peak is determined by the phase of the
1/1 mode, may not be at the MGI valve location

* In the simulations, mode phase is determined by the source location
(may not hold true in experiments)
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V,P drives rapid toroidal spreading, then
stagnation on far side of torus
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Toroidal distribution of impurities at TQ has small peak on

opposite side from source
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Total P, compares well with DIII-D measurements within

factor of two
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In pre-TQ, less radiation TQ part 2: 1/1 mode

at A¢=195 is expected TQ part 1:, 2/1+ convection produces large
n>1 modes increase p .
-ad SPike

radial heat flux
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Location of radiated power peak transitions
from jet side to opposite side
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Location of toroidal peak is opposite Ne injection site in both
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* Radiation peak occurs where hot
core is expelled toward LFS

* Mode phase flips when source
location flips

* More toroidally peaked than
symmetric injection
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Toroidal radiation distribution roughly given by square of

impurity distribution times n=1 T, variation
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0.5 ¢ :
o than symmetric
s 0.4F injection
e B :
203 v e Adding a second
o " valve could very
0.2} easily make things

waorse.

7

ﬂ 1 - - - - 1
0 60 120 180 240 300 <260

toroidal angle (°)

Dii-b UCSan Diego

SSSSSSSS




As first observed on C-Mod: Adding a second valve really

can make things
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What if the mode phase changed relative to the injection

location?

This is what happens in both simulations: But what if it were this?

/"LFS Ne

. Particles

* Flow points from smaller Ne peak toward
core: worse mixing efficiency?

* Hot core hits maximum Ne density:
higher TPF, peaked at injection location?

* Flow points from bigger Ne peak toward
core

* Hot core hits smaller Ne density peak, TPF
range from very symmetric to peaked on
opposite side
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Flipping the mode phase could result in very strong toroidal
peaking
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C-Mod finds connection between n=1 mode and

radiation asymmetry
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C-Mod finding: Faster growing
n=1 mode leads to lower
radiation TPF

NIMROD finding: n=1 mode
“prefers” a particular phase

(relative to gas jet), and that
phase tends to minimize TPF

Speculation: Phase of n=1 mode varies in experiment, but when n=1 mode
has the phase it “prefers” it grows faster, with the opposite phase it grows

A/ slower.
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Summary of Part 1: Radiation asymmetry

* During an MGl shutdown, the 1/1 mode drives radial mixing of
Impurities and produces toroidally asymmetric heat flux

* Even with toroidally symmetric impurity injection, the radiated power
IS asymmetric

* The relationship between the 1/1 mode phase and the jet
location(s) will be an important factor in determining the radiated
power peaking

 We need more data on the 1/1 mode phase in MGI experiments; is it
random or affected by the gas jet? does it rotate? (how much?)

« Much MGI data has been collected on many devices, but very little
with more than one jet. We know ITER will have more than one jet, but
1+1#2 in the TQ phase. More multi-jet data is needed.
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Part 2: Runaway electron confinement during a
mitigated TQ

- Evidence suggest that deconfinement by MHD fluctuations
will not be an effective strategy for ITER
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NIMROD calculates drift orbits for RE test-particles

during rapid-shutdown simulations

v Br 2
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Example of 10 MeV orbits in C-Mod

Field-line-following electrons Drift orbits for relativistic electrons
0.2} 0.2}
0.15¢ 0.15¢
01} /7 01t/
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E i
N :
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C At y=20 (about 10 MeV), electron drift displacement is ~ few cm. Displacements >
perturbation width can average, appearing well confined, as “red” electron
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“Prompt-loss” of REs during TQ is major suspect for shot-

to-shot non-reliability of RE plateau production

Prompt loss
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NIMROD modeling of Ar pellet shots shows prompt loss

of REs during TQ

Time=0.74 ms, 1652 confined REs
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NIMROD predictions of prompt-loss variation correlate

with DIII-D observation of RE plateau currents
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DIlI-D may occupy a special regime of marginal RE

confinement - cause of non-reproducibility

* In DIII-D, time between destruction and re-healing of flux surfaces (ty,p) is ™
few tenths of a ms

* Typical confinement time for REs when fields become stochastic (tx¢ ) is also ~
few tenths of a ms

* These times do not necessarily scale together (simulations suggest Ty cR3,
whereas Ty,,p <R).

Can we count on significant fluctuation
induced losses in ITER?
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It’s probably not a good bet
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At time of maximum MHD fluctuations, stochasticity does

not extend to the edge in ITER

C-Mod (0.2 ms) DIII-D (0.77 ms) ITER (1.3 ms)

A
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P
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Summary of Part 2. Runaway electron confinement

 Runaway electron orbit calculations during for pellet and
gas injection simulations reproduce prompt-loss seen during

Q

 NIMROD predicts shot-to-shot variation in prompt-loss that is
(in most cases) consistent with shot-to-shot RE current variation
in DIII-D

» Simulations show better RE confinement in larger devices (for
diverted plasmas)

* There is no good reason to believe that MHD deconfinement
will be an effective strategy for RE mitigation in ITER
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Conclusions

Part 1. Radiative heat loads during a mitigated TQ: Toroidal
(and poloidal) radiation peaking

-> Spatial symmetry of radiated power is not just a function of
the impurity distribution. MHD (especially n=1) plays an
important role. More data with multiple jets (and better
asymmetry measurements) are needed.

Part 2. Runaway electron confinement during a mitigated TQ

- Evidence suggests that deconfinement by MHD fluctuations
will not be an effective strategy for ITER. (Of course applied
perturbations at some level of external current could work).
Other possibilities include collisional suppression (if compatible
with CQ requirements), or control and dissipation of existing RE
beam.
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EXTRA SLIDES
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Mode phase appears fairly stubborn in the simulations,

but applied fields do affect growth rate

Applied n=1
’Applied fields vacuum fields
aligned with ( | '

|
L]

=

preferred phase

\Applied field anti-

aligned with
18 2 preferred phase

Mode amplitude

10 . . .
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% 1 1.5 2
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E 4

E .

S ____1  External n=1 perturbations have

o . the same phase in two simulations

0 0.5 ) 1[ : 1.5 2 while the location of the source is
ime (ms .
moved 180°. Mode amplitude and
time of saturation is affected, but ...

Di-p UC SanDiego

NATIONAL FUSION FACILITY
SAN DIEGO




Phase of unstable 1/1 mode is not ultimately affected by

applied fields

n=1 poloidal flow n=1 poloidal flow
at p=0° at 1.0 ms Applied fields have same phase in at $=0° at 0.95 ms
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Upcoming DIII-D experiment (Next week). Hope to lock

mode to n=1 I-coil fields

e Experiment will apply n=1 fields
with I-coils prior to MGI. Phase of Very crude synthetic diagnostic
applied fields will be varied from
shot-to-shot

—8— source + 75° 113{1':' Source) 9 |
—8— gource + 75° (07 source) o '
- #= gource + 195° 1130':' SOUrce ;0 l

- #= gource + 1957 {0° source)

* If we really can force the mode
to take a particular phase (despite
simulations results), significant
variations in locally measure
radiated power may be observed.

Local measure of P (GW)

e Even if mode phase does not

change, simulations suggest some L, , , , , . . .
0.2 6.3 04 05 06 O 0B 09 1
effect should be observed. Time (ms)
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DIII-D produces post-CQ RE current plateaus with

moderate reliability

142672 Exp=3Yus E=1999.03ms
1.2F T - :
1.0E
a.EfF
a.6F

Rapid shutdown by Ar pellet
effective at producing REs in DIII-D

a4F
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