Disruption Modeling Status and Opportunities

S. C. Jardin Princeton Plasma Physics Laboratory

Theory and Simulation of Disruptions Workshop 19 July 2013 PPPL

Areas where modeling is needed

- Causes of Disruptions
 - Density limit
 - Current and beta limits and regions of disruptivity
 - Overlapping islands, sawteeth, NTMs, ELMs, locked modes
- Effects of Disruptions
 - Forces from induced and conducted currents
 - Thermal loads
 - Runaway electrons
- Mitigation of Disruptions
 - Real time identification of impending disruptions
 - Massive Gas and/or Pellet Injection

Outline

- Brief summary of 2D modeling of disruptions
- New capabilities in 3D modeling with $M3D-C^{1}$
- Application to soft beta limit in NSTX

2D Integrated Modeling of Disruptions

Both the TSC and DINA 2D equilibrium evolution codes have been used extensively to model tokamak disruptions for over 20 years

- Developed 2D models of plasma+halo with a few adjustable parameters that were fit by detailed modeling of disruptions in existing experiments
 - DIII-D, ASDEX-U, JT-60, NSTX
- Detailed (2D) models of vacuum vessel and other conductors
- Runaway electron model (Rosenbluth/Putvinski)
- Calibrated pellet injection and impurity radiation models

Comparison of exp and TSC flux loops during VDE drift phase

A fast shutdown technique for large tokamaks: NF 40 923 (2000)

A regime exists where the plasma remains MHD stable during 4-sec current rampdown with negligible runaway generation

7

- 4 sec current ramp-down using PF coils
- Sequence of Krypton doped hydrogen pellets
- Monitor MHD stability

Summary of 2D Modeling

- Can match typical current quench rate on today's tokamaks with Te ~ 30 eV
- Can reproduce axisymmetric halo currents with:
 - T_{HALO} ~ 6 ev
 - If sheath resistance included, larger T_{HALO} is used
- Semi-empirical pellet model with some validation (Schmidt, TFTR)
- Avalanche runaway electron model needs validation (Rosenbluth)

Outside the scope of 2D modeling

- Mechanism that leads to thermal quench
- 3D effects on runaway electrons
- toroidal peaking factor of induced and halo currents

3D Modeling needs

- Highly implicit 3D MHD code to treat multiple timescales
 - Accurate for highly anisotropic $\chi_{||} >> \chi_{\perp}$
 - with plasma, wall, vacuum regions
- 3D model of vessel (with ports, etc)
- Plasma-wall interaction and impurity generation, transport, radiation
- 3D runaway electron model
- Accurate modeling of thermal quench and associated physics (converged results)

3D Modeling needs

- Highly implicit 3D MHD code to treat multiple timescales
 - Accurate for highly anisotropic $\chi_{||} >> \chi_{\perp}$
 - with plasma, wall, vacuum regions
- 3D model of vessel (with ports, etc)
- Plasma-wall interaction and impurity generation, transport, radiation
- 3D runaway electron model
- Accurate modeling of thermal quench and associated physics (converged results)

Thermal quench

→Can we use a nonlinear 3D Extended MHD code to determine when exceeding a stability limit will lead to a thermal quench and subsequent disruption?

M3D- C^1 code

- High accuracy
 - High order finite elements in 3D with C^1 continuity
 - Optimal decomposition of vector fields into scalars $\nabla \bullet \mathbf{B} \equiv 0$
 - Full 2F MHD equations without common approximations
 - Accuracy of linear flux-coordinate (FC) codes without using FC
- Long-time simulations (large time steps)
 - Fully implicit algorithm
 - Unique preconditioning that remains effective nonlinearly
 - Pure Galerkin method converges from below on ideal MHD modes
- Geometrical flexibility
 - Unstructured mesh allows variable mesh size (mesh packing)
 - Does not use flux coordinates
 Plasma region with separatrix
 - Arbitrary shaped vacuum vessel and conductors

NSTX pressure driven modes with $q_0 \ge 1$

Series of geqdsk equilibrium for shot 124379 generated by S. Gerhardt for 2011 Breslau, et al NF paper.

 $\beta_P \sim 0.8$ $\beta_T \sim 7 + \%$ $I_P \sim 1 MA$

 $\begin{array}{l} \text{Midplane} \\ \text{values} \rightarrow \end{array}$

Triangular wedge finite elements

Each element has a polynomial in (R,ϕ,Z) for each scalar with 72 terms. All first derivatives continuous between elements.

Possible mechanism for soft beta limit

Shot 124379 Time .640 $q_0 = 1.28$ No toroidal rotation

with same transport model

Soft beta limit $q_0 = 1.28$

Poincare plots \rightarrow

Surfaces deform, become stochastic, & completely heal.

First pure n=3, then nonlinear, finally axisymmetric annulus

soft beta limit -- continued

- Comparison of 3D run at t=6000 with 2D run with identical transport coeffs. shows thermal energy has been redistributed.
- Central Te differs by 10%, beta differs by only 0.6 %
- Increased transport in center (note: effect not in GK codes)

dependence on heating source

• Previous run had beta decreasing in time, even in 2D case, because there was no heating source (except Ohmic).

• Now add *neutral beam source* to keep beta constant and to drive sheared toroidal rotation

dependence on heating source-cont.

With neutral beam source

Ohmic heating only

effect of increasing (decreasing) heating

1e-14-

1e-15-

1e-16-

1e-17-

1e-18-

0

2000

4000

Time

6000

8000

n=0

1e-14

1e-15

1e-16-

1e-17

1e-18

0

2000

4000

Time

6000

8000

20

become more distorted,

but still exhibits

confinement (3)

effect of increasing (decreasing) heating

importance of sheared rotation

With heating and momentum input (sheared rotation)

With heating only (no rotation)

numerical convergence study

Original constant β run w/double the poloidal zones w/double the toroidal zones

Kinetic Energy Toroidal Harmonics vs tim

Kinetic Energy Toroidal Harmonics vs time

Kinetic Energy Toroidal Harmonics vs time

Longer times

Kinetic Energy Toroidal Harmonics vs time

The current (and q) profiles are continuing to evolve.

Does anything interesting happen at longer times?

Longer times

Kinetic Energy Toroidal Harmonics vs time

Longer times

After some transient, surfaces appear to reform. Still healing!

Kinetic Energy Toroidal Harmonics vs time

"Thick wall" capability recently added to $M3D-C^{1}$

summary

- 2D and 3D models have and are contributing to understanding experimental results and extrapolating to ITER
- Opportunities exist for improving models to increase realism
- Example presented of modeling the nonlinear consequence of exceeding linear beta limit with M3D-C¹.
- Possible mechanism for soft beta limit identified.
- Sheared rotation shown to be stabilizing
- Need for more experimental validation of converged numerical modeling results

NSTX shot 124379 time 0.640 TF scaled by 0.9 so $q_0=1.17$

convergence studies for linear regime of nonlinear code

M3D-C¹ growth rate vs number of toroidal elements

This scaled equilibrium was above the beta limit and unstable to many linear (interchange) modes with n>1.

The nonlinear code is *converging from below* to the linear result, which is essential for numerical stability in these cases.