

Computational Modeling for Disruption Avoidance

S. Kruger, Tech-X J. Menard, PPPL

Acknowledge discussions with A. Pankin, D. Humphreys, V. Chan, A. Reiman, M. Greenwald

Caveat: Many slides come from 2010 so some experimental data may be out of date

Much of the conference has focused on consequences

- Halo/Hiro currents
- Runaway electrons

Consequences

Important, but need to worry about avoiding disruptions

Consider avoiding disruptions from external kinks

Goal is to safely traverse to safe, but highly performant, operating point

External kink boundary

- Boundaries are fuzzy because of profile effects
- Steady-state is fuzzy because profile is constantly changing

Many causes of disruptions: stable trajectory needed for all causes

TECH-X

Avoidance is closely tied to disruption prediction

- During a disruptive discharge, the stability limits are reached and then crossed
- As it crosses boundaries, time to detect precursors
 - Callen: Detection time for ideal modes tied to transport time scale
- Experimental detection of precursors tells us how well we understand stability boundaries

Two approaches:

- •Detect precursor, mitigate
- •Detect boundary, use actuators to nudge back to stable region

NSTX studies: Multiple cause, physicsbased approach is effective

- Neural network approach:
 - JET: 23% Miss rate
 - Neural net trained on JET applied to ASDEX: 67% success rate within 10 ms
 - ASDEX trained on JET: 69% success rate within 40 ms
 Windsor *etal* NF 45, 337 (2005)
- Multi-diagnostic, hand-tuned approach (NSTX):
 - Missed rate: 3.7%
 - ♦ False-positive rate: 2.8%
 - Uses: Magnetic signals, neutron emission, loop voltage, rotation measurements, EFIT-derived measurements

Gerhardt etal NF 53, 063021 (2013)

CannasB.*etal* NF **47,1559 (2007**)

Burning plasma is a new regime: Fundamentally different physics

- Endothermic regime => exothermic regime
 - Self-heated, not externally heated
 - Significant isotropic 3.5 MeV alpha population
 - Larger device scale
- We will have *less control* of plasma Combusion science != locally heated gas dynamics Fission reactor fuel physics != Heated fuel rod
- Use simulation to reduce uncertainties

Why Whole Device Model?

- Only model that operates on the long time scale needed for disruption avoidance
- Has synthetic plasma control systems for modeling the actuators
- Many of the problems are really transport problems:
 - Impurities entering the core on JET
 - Inadequate control systems
 - How a plasma reaches an MHD unstable state

Typical Time Scales in a next step experiment with B = 10 T, R = 2 m, $n_e = 10^{14}$ cm⁻³, T = 10 keV

Jardin

Identification of states with acceptable MHD stability

- Need WDM + expt to understand chains of events that lead to disruption
- Example chain: from PFC to plasma core and back:
 - Tile over-temperature → tile melting or ablation → impurity influx → radiated power increase leading to H→L back-transition →p profile peaks, l_i increases → internal kink mode → thermal collapse and/or VDE → possible damage to PFCs
- Need to determine probability of each event to determine overall risk

WDM will be essential for determining optimal actuator <u>and</u> transport response to avoid disruption

- Transport + sources determine profiles
- Profiles determine turbulent transport
 - Can have strongly non-linear responses and/or positive feedback loops (can lead to disruption)
 - Reversed shear (RS) q profile can reduce core transport, re-enforcing RS profile → pressure-driven MHD instabilities near q-min → possible disruption
 - Control of q profile (aka parallel current density profile) is likely essential for disruption avoidance
- WDM vital to designing/validating controllers for real-time current profile control
 - Same actuators must respond to many other control requests and constraints
 - Example: reduced model evolving: ψ , n, T, P, V_{Loop}

Figure 1(b): Real-time control of the q-profile using LHCD, NBI and ICRH (Pulse No: 58474, $B_T = 3T$, $I_p = 1.8/1.5MA$). The profile is shown at four different times between 7s and 12s. Pluses represent the 5 q-setpoints at $r/a = [0.2 \ 0.4 \ 0.5 \ 0.6 \ 0.7]$.

D. Moreau

Development of Integrated Real-Time Control of Internal Transport Barriers in Advanced Operation Scenarios on JET - EFDA–JET–CP (04)07-29

ITER actuator plasma control matrix is large

J.A. Snipes et al. / Fusion Engineering and Design 85 (2010) 461–465

Magnetic field coils, heating and current drive sources, and plasma transport properties determine equilibrium shape and profiles

Pedestal/ELMs, fueling, impurities strongly influence fusion performance

Heating, current drive, fueling, and 3D field actuators strongly influence plasma MHD stability and thus disruption avoidance

Disruption mitigation is required when disruption is unavoidable

															<u> </u>	
Plasma Control Matrix Primary control Secondary control Little or no control	Actuators	Electron Cyclotron	lon Cyclotron	Neutral Beam	Toroidal Field	Poloidal Fields	Correction Coils	Internal VS Coils	ELM Control Coils	Fuelling Gas Injection	Impurity Gas Injection	Fuelling Pellet Injection	ELM Pacemaking Pellet Injection	Impurity Pellet Injection	Vacuum Pumping	Disruption Mitigation System
Control Parameter Sets	1			-	-						1					
Wall conditioning & Tritium removal																
Error fields																
Plasma breakdown	\mathbf{T}										-					
Plasma current	+			-												
Plasma shape																
Plasma position																
Internal inductance																
ICRF coupling				-												
Divertor power load																
Divertor radiation					-										${\mathcal T}_{\mathcal T}$	
Divertor neutral pressure																
ELM frequency/magnitude																
Electron density																
Fuelling ion density										10				1		
Impurity density				-	1.1				1.1							
Helium fraction																
Core D/T ratio																
Fusion power																
Plasma stored energy																
Beta toroidal									-	1-1	-				1	-
Plasma rotation											-					
Current density profile																
Core radiation																
Sawtooth period/amplitude																
NTM control																
RWM control																
Disruption control																
Controlled plasma shutdown				-					- 1							
Runaway electron control																
Disruption mitigation																

Basic picture of simulations for disruption avoidance

At each point:

- Evaluate nearness to disruption boundaries
- Based on nearness to boundary, use actuators appropriately to move in desired direction

Evaluate for each cause: "Curse of many dimensions"
Two main accuracy issues:

- 1. How accurately can we predict trajectory through parameter space? (reduced models of RF and GK)
- 2. How accurately can we predict nearness to boundary? (reduced models of MHD)

How can we use modeling to help? Consider disruptions caused by MHD instabilities

- •Enables calculation of both safe and best-possible performance of ITER
- •Same process can also model performance of real-time controllers
- •Longer term: "reduced WDM" + stability forecasting in real-time/PCS
- •Each box above represents an extensive validation campaign!!

Considering just the MHD unknowns

MHD Type	Experimental Understanding	ITER relevance	Theoretical/ Computation
VDE	High	Most dangerous, but best controls in place	Reasonably well understood for initial dynamics
External kink	High	Dangerous, but limits well understood	Reasonably well understood for onset
Sawtooth	High	Can probably live with?	Reasonably well understood
NTM	Medium	High: Most frequent cause of disruptions on JET	Need work on locked mode -> disruption
RWM	Medium	Depends on operating regime	Improving - drift- kinetic effects shown to be important

Reality check

From A. Siegel on nuclear engineering modeling

SciFi Future **Traditional**

Fundamental insight

First-principles physics
Replace experiment

• Virtual prototyping

Predict Specific Global Properties (mixing, mean temp profile)

Extrapolate Empirical Correlations

- Some modeling required
- Imperfect physics
- Huge range in scales

• Based on experimental data

• Simple e.g. 1d physics

Can we predict tearing modes?

• Resistive MHD: $\tilde{B} \bullet \nabla \frac{J_{\parallel 0}}{B_0}$

 $\sim m\tilde{\psi}\frac{\partial^3}{\partial r^3}\psi_0$

Kinetic effects: rotation, ion banana orbits, electron kinetics, energetic particles, ...

LASMA PHYSIC

What do we mean by "predictive simulations"

- We are not predictive without significant caveats, and this is likely to be the case for decades to come
 - Historical reasons for using the word "predictive": Predictive WDM was used to distinguish between interpretive WDM
 - But "predictive" carries mental baggage that conveys the wrong idea to people both within and without the fusion community
- Why do simulations?
 - Weather simulations are not predictive either, but they still do them for forecasts
 - Can we forecast disruption probabilities?
 - Hurricane simulations have saved lives.
 - Can disruption WDM save machines?

Validation is crucial to accurate forecasting

WDM has unique challenges for validation

- Example from Kinsey, PP 9, 1676 (2002): The average rms error for all 22 discharges is 18.4%, 13.1%, and 16.7% for Te, Ti, and vphi, respectively. ... For the entire 125 discharge dataset, the model has an rms error of 12.4% in the core thermal stored energy. The corresponding rms error in the incremental thermal stored energy is 17.4%.
- But, this is taking from the experiment:
 - Sources
 - Sinks
 - Magnetic geometry
 - Boundary condition
 - Free parameter to get best fit for velocity profile

Spirit of UQ: Formalize all inputs and assumptions

- Define experimental and simulation vectors xexp, xsim: $x = [n, Te, Ti, \Omega, \Psi]$
- Flux and sources tensors explicitly separated

$$\begin{split} \Gamma_{x}(\rho) &= \Gamma_{predict}(\rho) + \Gamma_{interp}(\rho;p_{1},p_{2},\ldots) = \Gamma_{GLF23} + \Gamma_{neo} + \ldots + \Gamma_{interp} \\ S_{x}(\rho) &= S_{predict}(\rho) + S_{interp}(\rho;p_{1},p_{2},\ldots) = S_{RF} + S_{NB} + S_{\ldots} + S_{interp} \end{split}$$

• Choose optimization metric; e.g.,

$$M = ||x_{sim} - x_{mod}||; \quad M = |x_{sim}(\rho_s) - x_{mod}(\rho_s)|; \quad \dots$$

• Find parameters p1, p2, ... which optimize metric Γ_{inter} , S_{interp} -> 0 => predictive $\Gamma_{predict}$, $S_{predict}$ -> 0 => interpretive

Additive flux minimization technique has been used for JRT

- Want to understand extent to which paleoclassical model explains observations
- Using *x=[n]* and:

$$\Gamma_{predict}(\rho) = \Gamma_{Paleo}(\rho); \quad \Gamma_{interp}(\rho; D_{add}) = -D_{add} \frac{dn}{d\rho};$$

$$S_{diff}(\rho; S_0^{exp}, \delta) = S_0^{exp} \exp\left[-\frac{|\rho - \rho_a|}{\delta}\right]$$
Optimization metric: $M = \left\|n_{sim}(\rho_{ped}) - n_{exp}(\rho_{ped})\right\| / n_{exp}$

1

- Use DAKOTA Project software from Sandia
 - "Large Scale Enginering and Uncertainty Analysis Software"
 - Least-squares, Gradient-based unconstrained optimization

Applying optimization technique to disruption avoidance

- Lessons learned: Automate as much as possible. Use modern architecture to brute force everything
- Multiple runs allow for statistical measures:
 - Move from "prediction" to "forecasting"
- Automating equilibrium generation has many challenges
 - Perturbations to for optimizing equilbrium -> delta-W (Cowley)
 - Delta-W is very stiff so small radius of convergence
 - ... but routinely done by EFIT for peeling-ballooning studies, currently being done by Pankin with more constrained eq codes.

Conclusions

- Avoidance on ITER might be easier because of the long pulses -> More time to respond
- Scaling current methods to ITER needs computational modeling.
- For disruption avoidance, WDM can be used to:
 - Provide mechanism for reducing complex physics from MHD/ GK/... codes to something closer to the boundaries
 - Optimize the plasma control system
 - Provide statistical measure of nearness of stability boundaries
 - Explore the large parameter space more efficiently
- Development of this capability requires extensive validation
- Tools from the applied math community are useful in performing this validation and point to the future of how to use and validate WDM models

Extra Slides

WDM needed for disruption probability validation

Figure 2. The total disruption rate per plasma pulse (red) and the rate for only unintentional disruptions (grey) for the various commissioning and experimental campaigns from 2000 to 2007. Note that the duration and number of plasmas produced in each campaign can vary considerably.

P.C. de Vries Nucl. Fusion **49** (2009) 055011

Table 2. The number of shutdown triggers observed prior to disruptions over the operational period from 2000 to 2007. The first two columns give the numbers for all the disruptions, while in the last two columns intentional disruptions are excluded. The technical shutdowns combine all possible stops triggered by PPCC, shape controller (SC), power supply protection systems and even manual stop buttons.

	All dis $(I_p >$	ruptions 1 MA)	Unintentional disruptions			
Total	1707		1301			
Type of shutdown Mode Lock Technical (PPCC, SC, etc.) MHD mode None	736 304 40 627	43.1% 17.8% 2.3% 36.7%	630 304 40 327	48.4% 23.4% 3.1% 25.1%		

Nearly ¹/₂ caused by locked TM/NTM

- WDM can provide the foundation for understanding coupled plasma processes that can lead to plasma instabilities and disruptions
- Need to treat disruptions (WDM and expt) probablistically to determine safe operating conditions, improve performance

Computation set of nearby (equilibrium) states

- MHD stability quite sensitive to underlying equilibrium
 - Need well resolved, converged equilibrium fixed and free
 - WDM needs increased spatial resolution (mesh refinement)
 - Uncertainty quantification methods for equilibrium generation need to be more robustly developed
 - Above issues also apply to equilibrium reconstruction
- Need ability to easily and rapidly vary/scale *p*, *q*, <JxB>, ...
 - Also need a range of constraints: I_P , β_N , q_{95} , ...
- 3D effects also important in tokamak equilibrium solutions
 - Error fields, TBM/TF ripple: impacts transport, stability
 - RMP coils: Islands in pedestal(?), divertor strike-pt splitting
 - Need 3D equil. solvers (perturbed ideal, with islands, ...)
 - Actual & synthetic diagnostics to measure/constrain in 3D
 - Resolution, convergence requirements also apply to 3D

ITER needs WDM for plasma control system (PCS) development to achieve Q=10 while avoiding disruptions

PCS Interfaces

- · 55 diagnostic systems, 20 actuator systems connected with real-time networks
- PCS connected to other CODAC systems: live databases, mass data storage, supervisory control system ...
- PCS and Interlock Systems together provide ITER investment protection

PCS novel features/challenges

- 1) novel control schemes e.g. Fusion burn control
- α-particle/energetic particle physics
 - energetic particle confinement influence of colf besting, enhanced best l
- Burning plasma control scenarios
 - burn control (D/T mix profile), transport barriers, dominant core pellet fuelling
 - non-linear interactions between α and auxiliary heating, plasma pressure, rotation and current density profiles

2) multiple coupled control

- · Number of actuators per control functions
- Example: Electron Cyclotron Heating used for heating, NTM stabilization, sawtooth contol, temperature profile control
- · For high performance discharges, most of the above need to be controlled.
- Most present day tokamaks use designated shots where only few coupled parameters are routinely controlled simultaneously (apart from equilibrium).
- · Active R&D topic with major impact on PCS design

3) event handling

- Keep discharges available for physics exploitation
- Optimize discharge time, enable event-driven multiple experiments per discharge
- Avoid disruptions and continue discharge if possible
 - · Mitigate plasma-driven effects and component failure & problems
 - Switch to backup heating systems or scenario, suppress MHD instabilities, cope with sensor & actuator failure
 - Event forecasting
 - Implement real-time modeling if applicable, avoid undesired plasma regimes
 - Provide dynamic ramp down scenarios (limit use of disruption mitigation system)
- Most demanding, practically not implemented anywhere, presently with complexity close to ITER needs

Modern tokamaks are rather complex (I)

RF Antennas

Divertors

Plasma Facing Materials

Diagnostic Ports

Each method for controlling the plasma needs to be included in modeling (to varying levels of degrees)

WDM codes answer the broadest tokamak operational questions

- How can we best operate current experiments?
 - How do we understand interpret experimental data in terms of physically intuitive quantities?
 - How do we predict the behavior of the next discharge based on our current knowledge?
 - How do we achieve higher performance given our available actuators?
- How do extend our knowledge to ITER?
 - E.g., how do we avoid disruptions?
- How do we extend our knowledge to DEMO?
 - What materials should we use? What sources are optimal?

Core Transport Equations

Ion species density $\begin{bmatrix} \frac{1}{V'} \frac{\partial}{\partial t} V' + \dot{\rho} \frac{\partial}{\partial \rho} \end{bmatrix} n + \frac{1}{V'} \frac{\partial}{\partial \rho} \begin{bmatrix} V' \ \Gamma_n \end{bmatrix} = \langle S_n \rangle \quad N_i \text{ equations} \\ (N_i = \# \text{ of ion species}) \end{cases}$ Species energy $\begin{bmatrix} \frac{1}{V'^{5/3}} \frac{\partial}{\partial t} V'^{5/3} + \dot{\rho} \frac{\partial}{\partial \rho} \end{bmatrix} \frac{nT}{\gamma - 1} + \frac{1}{V'} \frac{\partial}{\partial \rho} \begin{bmatrix} V' \ \Gamma_E \end{bmatrix} = \langle Q_{net} \rangle \quad N_i + 1 \text{ equations} \end{cases}$ Total angular momentum $\begin{bmatrix} \frac{1}{V'} \frac{\partial}{\partial t} V' + \dot{\rho} \frac{\partial}{\partial \rho} \end{bmatrix} L_T + \frac{1}{V'} \frac{\partial}{\partial \rho} \begin{bmatrix} V' \ \Gamma_\Omega \end{bmatrix} = \langle S_\Omega \rangle \quad 1 \text{ equation}$ Poloidal flux $\frac{\partial}{\partial t} \psi_p \qquad -\frac{\eta_n^{nc}}{\mu_0} \Delta^+ \psi_p = \langle S_\psi \rangle \quad 1 \text{ equation}$ $3 + N_i \text{ equations}$

Together with separate 2D equilibria equation:

$$\Delta^* \psi = -R^2 \mu_0 \frac{\partial p}{\partial \psi} - F \frac{\partial F}{\partial \psi}$$

And neutrals equation which is not shown (potentially 2D)

1D Core Transport Equations

Component often classified by how they fit into WDM paradigm

Component list at:

http://fspcomp.web.lehigh.edu/index.php/Existing_components

Lists 67 components **SOURCES** NEUTRAL BEAM **RF HEATING AND** Turbulent: Neoclassical **CURRENT DRIVE** INJECTION.... **NBEAM** Chang-Hinton, ... Coppi-Tang,... **GENRAY, TORAY** NUBEAM GLF23, MMM95 **NCLASS** TORIC TGLF, MMM08 AORSA NEO Increasing computational GYRO, GEM, ... **FUSION HEATING** cost 2D EQUILIBRIA (Includes PELLET INJECTION

coils)

TEQ, VMEC, EFIT, ..

MHD Linear StabilityMHD TransportDCON, ELITE, MARS,Models...ISLAND, ELM,Sawtooth, ...Sawtooth, ...

Kinetic Stability

GLAQUELC....

GS2, ...

"Edge region" acts as boundary condition for core region

FACETS goal: WDM for core-edge-wall using HPC resources

	Profile advance	Dynamic Eq.	Parallel NB	Parallel RF	Parallel reduced flux calcs	Embed Turb.	2D Edge Transprt	Wall modeling
pTRANSP	YES	YES	YES	YES	NO	NO	NO	NO
TSC	YES	YES	YES	NO	YES	NO	NO	NO
XPTOR	YES	YES	NO	NO	NO	NO	NO	NO
CORSICA	YES	YES	NO	NO	NO	NO	NO	NO
TRINITY	NO	NO	NO	NO	NO	YES	NO	NO
TGYRO	NO	NO	NO	NO	YES	YES	NO	NO
IPS/TSC	YES	YES	YES	YES	YES	NO	NO	NO
FACETS	YES	~6 months	YES	~6 mo. w/ IPS	YES	YES	YES	~6 months

Possible examples of SciFi

- Sovinec: Can we predict that tile 539 will fall into the plasma and cause it to disrupt?
- L-H transition (predator prey model canonical chaotic system.
- Can we predict tearing mode onset?
 - Resistive MHD: $_{\tilde{B}}$

 Kinetic effects: rotation, ion banana orbits, electron kinetics, energetic particles, ...

