VDEs and Resistive Wall Instabilities with M3D-C1

by N.M. Ferraro

Presented at the Theory and Simulation of Disruptions Workshop

Princeton, NJ July 10, 2014

NM Ferraro/TSD/July 2014

Previous M3D-C1 Calculations Required Conducting Boundary Within PF Coils

- Affects stability & plasma response
 - Especially n = 0, n = 1
- Shields magnetic probes from plasma response
 - Plasma response outside of conductor is zero
- Implementing resistive wall boundary conditions was challenging
 - All boundary nodes become coupled; hurts parallel scalability
 - Extant RW codes are spectral

2

New Resistive Wall Capability In M3D-C1

- 3 regions inside domain:
 - Vacuum (J = 0)
 - RW ($\mathbf{E} = \eta_W \mathbf{J}$)
 - Plasma (Extended MHD)
- Boundary conditions:
 - $-\mathbf{v}$, p, n set at inner wall
 - B set at outer
 (superconducting) wall
- <u>There are no boundary</u> <u>conditions on B or J at the</u> <u>resistive wall</u>
 - Current can flow into and through the wall

3

Advantages and Disadvantages of Including Resistive Wall In Domain

• Advantages:

- Computation is more scalable than using RW BCs for implicit step
 - RW BCs couple all finite elements touching the boundary
- Can add time/space dependent physical attributes of wall
 - Resistivity, temperature
- Can allow current to flow into and out of wall

• Disadvantages:

- Bigger matrices
 - But non-MHD regions do not make matrices more poorly conditioned
- Still need a conducting boundary somewhere
 - This could be a problem in STs like NSTX-U

Two-Fluid Model is Implemented in "Plasma" Region

$$\begin{aligned} \frac{\partial n}{\partial t} + \nabla \cdot (n_i \mathbf{v}) &= 0 \\ n_i m_i \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) &= \mathbf{J} \times \mathbf{B} - \nabla p - \nabla \cdot \Pi_i \\ \frac{\partial p}{\partial t} + \mathbf{v} \cdot \nabla p + \Gamma p \nabla \cdot \mathbf{v} &= -\frac{1}{n_e e} \mathbf{J} \cdot \left(\Gamma p_e \frac{\nabla n_e}{n_e} - \nabla p_e \right) - (\Gamma - 1) \nabla \cdot \mathbf{q} \\ \frac{\partial \mathbf{B}}{\partial t} &= -\nabla \times \mathbf{E} \\ \mathbf{E} &= -\mathbf{v} \times \mathbf{B} + \eta \mathbf{J} + \frac{1}{n_e e} (\mathbf{J} \times \mathbf{B} - \nabla p_e) \end{aligned}$$

- Ion viscosity model optionally includes Braginskii gyroviscosity, parallel viscosity (poloidal flow damping)
- Open field line region of "plasma" region is treated as low-temperature, lowdensity plasma

5

Two-Fluid Model is Implemented in "Plasma" Region

$$\begin{aligned} \frac{\partial n}{\partial t} + \nabla \cdot (n_i \mathbf{v}) &= 0 \\ n_i m_i \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) &= \mathbf{J} \times \mathbf{B} - \nabla p - \nabla \cdot \Pi_i \\ \frac{\partial p}{\partial t} + \mathbf{v} \cdot \nabla p + \Gamma p \nabla \cdot \mathbf{v} &= -\frac{1}{n_e e} \mathbf{J} \cdot \left(\Gamma p_e \frac{\nabla n_e}{n_e} - \nabla p_e \right) - (\Gamma - 1) \nabla \cdot \mathbf{q} \\ \frac{\partial \mathbf{B}}{\partial t} &= -\nabla \times \mathbf{E} \\ \mathbf{E} &= -\mathbf{v} \times \mathbf{B} + \eta \mathbf{J} + \frac{1}{n_e e} (\mathbf{J} \times \mathbf{B} - \nabla p_e) \end{aligned}$$

- Ion viscosity model optionally includes Braginskii gyroviscosity, parallel viscosity (poloidal flow damping)
- Open field line region of "plasma" region is treated as low-temperature, lowdensity plasma
- VDE calculations here use a single-fluid model

"Free Boundary" 3D Response

Resistive Wall Capability Allows "Free-Boundary" 3D Response Calculations

- (Technically fixed-boundary, but now conducting wall is very far from plasma and outside PF coils)
- In zero-frequency response, there are no eddy currents
 - Resistive wall can still play a role: currents can flow through wall
- Free-boundary response allows direct comparison with new MP data

NM Ferraro/TSD/July 2014

Preliminary Free-Boundary Calculations Show Encouraging Agreement With Experimental Data

 $\beta_N / \beta_{N, no-wall} = 50 \%$

- Free-Boundary 3D response calculated with several codes
 - IPEC, MARS-F: linear, ideal
 - M3D-C1: linear, two-fluid, resistive
 - VMEC: nonlinear, ideal
- Calculated values are in decent agreement with measurements
- Different codes show different sensitivities to bootstrap current
 - M3D-C1 seems least sensitive. probably because there is no q_{edge}

9

Inclusion of Open Field Line Region Introduces Additional "Free Parameters" in M3D-C1 Model

- Because M3D-C1 models open field-line region as a plasma, \bullet the parameters of this region can affect the response
- Magnetic probe response is especially sensitive to the resistivity of this region

Vertical Displacement Events

Nonlinear Calculation Recovers n = 0 Instability In DIII-D VDE Discharge

- DIII-D discharge 088806 disrupted due to gas injection
 - Vertical stability was lost shortly after thermal quench
 - Timescale ~ 3 ms

SAN DIEGO

3.0

BETAN of 88806

Nonlinear Calculation Initialized From EFIT Reconstruction

- M3D-C1 was initialized using the reconstructed equilibrium just before TQ (t = 1720 ms)
 - Equilibrium is re-solved on M3D-C1 grid
- Nonlinear *n* = 0 calculation uses fairly realistic plasma parameters
 - Spitzer resistivity: $S_0 \approx 6.8 \times 10^{-7}$
 - Anisotropic thermal conductivity: $\chi_{\parallel}/\chi_{\perp}$ = 10⁶
 - Anomalous perp. transport: $100 < \chi_{\perp} < 800 \text{ m}^2/\text{s}_{-1}$
- RW approximates first wall, not vacuum vessel here; using "modern" first wall, different from old experiment

These Calculations Are A "First Try"; Not Suitable For Quantitative Validation

- Simulations done at low resolution
 - 5059 elements, ~320k DOFs
- $T_{SOL} \approx 100 \text{ eV} \rightarrow \eta_{SOL} \approx 1.6 \times 10^{-6} \Omega \text{ m}$
- Single-Fluid, no sources
- Wall is uniform thickness (2 cm), resistivity

Simulations Include Thermal Quench Stage

• A thermal collapse happens on ~100 μs timescale, due to large perpendicular thermal conductivity

- Not caused by any MHD activity or convective transport

At some point during the TQ, the plasma becomes vertically unstable

Calculation Shows Vertical Displacement Into Lower Divertor

- Both co-l_p and counter-l_p currents are seen in the open field-line region
- Plasma always moves to lower divertor, unlike in experiment
 - Maybe due to different wall configuration?

Timescale of VDE Scales Inversely with $(\eta_W)^{1/2}$

• Given wall thickness $\delta = 2 \text{ cm}$ and a poloidal scale length d = 50 cm, resistive wall diffusion times range from ~6.5 ms to ~0.65 µs

 $\tau_W = \frac{\mu_0 d\delta}{2}$

 $\eta_{\scriptscriptstyle W}$

• VDE timescale is longer than resistive wall time

- Doesn't seem strongly affected by T_{SOL} ; need more cases

Currents in Wall and Open Field-Line Region Change with $\eta_{\rm W}$

- At early stage of VDE, currents in the wall are stronger at lower η_W
- Counter-I_P currents are significantly stronger at higher η_W

Wall Currents are Mostly Inductive

- Poloidal currents are present in the open field-line region
 - Gradients in $R B_{\phi}$ imply poloidal currents
 - Current flows from plasma to wall to ensure $\nabla \cdot \mathbf{J} = 0$
- Poloidal wall currents are consistent with excluding toroidal flux

Wall Currents are Mostly Inductive

- Toroidal currents are also present in the open field-line region
 - Magnitude may be an artifact of high T_e in the open field-line region
- Toroidal wall currents are consistent with excluding poloidal flux

Current Spikes Observed Before Current Quench; Associated with Vertical Motion of Plasma

 Current spike onset is correlated with vertical motion of plasma, unlike TQ

• "*I_p*" here only includes all toroidal current in the plasma region, but not in the resistive wall

21

Current Spike is Associated With Loss of Counter-*I*_P Current In Open Field-Line Region

Current Spike is Associated With Loss of Counter-*I*_P Current In Open Field-Line Region

Max Poloidal Current in Wall Depends Weakly on η_W

- Maximum J_R occurs very late in VDE, when plasma is limited by lower divertor
- Maximum J_R is roughly 2–2.5 MA/m² in this case
 - Corresponds to $F_Z \sim 500$ kN over ~ 50 cm of the lower divertor

VDEs Also Simulated for NSTX; Results Similar to DIII-D Simulations

 NSTX case also shows co-current and counter-current current density in the open field-line region

Toroidal current density at 5 times in VDE simulation

25

NM Ferraro/TSD/July 2014

Disruptions From V_L Reversal Are Being Explored

 At the end of the discharge, the loop voltage in NSTX is rapidly reversed to quench the OH coils

- Experimentally, this often leads to a disruption
- We are trying to reproduce this with M3D-C¹ using realistic parameters
- Difference in 2D and 3D behavior is due to 3D instabilities

26

Edge Mode Found in Reversed-V_L Simulation

Edge Mode Found in Reversed-V_L Simulation

Summary

- "Free-Boundary" response using resistive wall model is being validated using new 3D magnetic probes
 - Agreement is encouraging
 - Results sensitive to treatment of open field-line region, especially resistivity; other sensitivities are being explored

• VDEs successfully simulated in DIII-D and NSTX-U

- Axisymmetric, single-fluid
- Spitzer resistivity, realistic parameters

• Currents are observed in the wall and open field-line region

- At early stages of disruption, wall currents are larger at low η_W
- At late stages of disruption, wall currents depend weakly on η_W
- Current spike is observed, and is associated with contraction of plasma and loss of counter- I_P current (not TQ)

Future Work Will Focus on Quantitative Validation and 3D Effects in Disruptions

- Need cases with lower boundary T_e
 - Will faster current decay reverse wall current direction?
- Non axisymmetric instabilities during disruption may lead to sideways forces, enhanced transport
- First step: linear stability analysis of 2D evolving equilibrium
 - Very fast
 - Will show onset, but not saturation / dynamics of n > 0 instability
- Next step: fully nonlinear 3D
 - This will be possible soon, but expensive
 - Nonlinear evolution will be necessary to quantify forces, etc.

Extra Slides

NM Ferraro/TSD/July 2014

VDE Calculations Also Successfully Simulated for NSTX

• Position of outer boundary can still strongly affect stability

