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Abstract

The surface current on the plasma-vacuum interface during a disruption event
involving kink instability can play an important role in driving current (Halo or
Hiro current) into the vacuum vessel. However, there have been disagreements
over the nature or even the sign of the surface current in recent theoretical
calculations based on 1dealized step-function background plasma profiles. We
revisit such calculations by replacing step-function profiles with more realistic
profiles characterized by strong but finite gradient along the radial direction.
Consequently, the resulting “surface current” 1s no longer a delta-function current
density, but a finite and smooth current density profile with internal structure,
concentrated within the region with strong plasma pressure gradient. Moreover,
this current density profile has peaks of both signs, unlike the delta-function case
with a sign opposite to, or the same as the plasma current. We show analytically
and numerically that such current density can be separated into two parts, with
one of them (convective current density) having the physical meaning of
transporting the background current density by the displacement, and the other
part called the residual current density, which can have important effects during
disruption if it enters the vessel wall. We will compare our results with previous
work carried out with step-function profiles, as well as simulation data.
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Introduction

¢ During a major disruption in a tokamak, a kink instability can follow a
vertical displacement event (VDE).

¢ The current (identified as Halo or Hiro current in the literature)
flowing into the vacuum chamber walls can have significant damaging
effects.

¢ There has been controversies over the nature, or even the sign, of the
Halo/Hiro current.

¢ Step-function derivations were used in most theoretical studies. We
will show that it 1s important to relax such an approximation to help
clearing up the sign confusion, and understanding the physical nature
of such current.



Outline

Review of step-function results --- identify the problem
Numerical results with step-function approximation removed

Discuss the sign, and the physical nature of “surface current”
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Show that the current density and mass density profiles can generally
evolve into different forms and that could affect the instability
condition

¢ Conclusions



Review of step-function results --- problem setup

¢ Following [Strauss et al. 2010] --- cylindrical (7, 6, ¢), large aspect
ratio (Ry/b), reduced MHD

magnetic field B =V x qAb + Boq7)
density p=1forr<a,0fora<r<b
L ) -2B,/q,R, torr<a
background current density j,, =-V Yy, =
0 forr>a

unstable mode with displacement & = VO x qAb o oM +ng)+yt

thin resistive wall at » = b, with resistivity n,, and thickness o, (wall time:
T, =0b/mn,)

rB,
Ryq(r)

oy, 17 .
B, =——%=_ rr'dr' =
o0 or F{qu( )



Review of step-function results --- eigen equation
Start with equation of motion: y°V-(pV ®)=B,-VViy, + B, - VViy,

using equation for magnetic potential:

Y, =B, VO = iB k,®, with
(-1

——|[m-ng,| forr<a
1 mR, . ., gk,
— = n+—; f]¢0r dr'| =1 5
Q(I") R() BOI" 0 1 ma
nqg,——| forr>a
\%Ro r
. . ~ . A a A
First order magnetic field: B, =V, x ¢ = my, r— % 0
r r
2mB;
PV, B AN ~8(r — ayy,
ki qolor

= )/2V°[
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Review of step-function results --- eigen mode solution
Viy, =0forO<sr<a,a<r<b,b<r
boundary conditions: ¢, =0 atr=0 and r —

V2 =9 rd)r-m’/r’

rl/Jp=1/)1oz(”/a)m : forO<r<a
Y, =1, =w2a(r/a)m +w3a(a/r)m ,for a<r<b
wx=w4a(b/r)m ’ fOr b<r
2
Y / 2 ' ' 2mk”
—a,p =y, —y =k -y )-
atr=a wp wv Bg wp | (qjv q)p) qORoawp

atr=>b, Y =y , Yoy = TIW(UJ; ‘U}L)

solve v, , Y, ¥, 1n terms of ¢, , and obtain equation for vy :



Review of step-function results --- growth rate

2 N [1+2/()/17W)]k”2 K _m—an;l_(m—nqo)[l+2/(yrw)]}

2B 1-(a/b)™ +2/(yr,) Rag, R | 1-(a/b)™ +2/(yt,)

Third order algebraic equation --- can be solved exactly.

In the limit of T, — oo for a highly conducting wall,

fornq —m+1—(a/b)2m >0 Y2 ~(m—nqo)[nqo—m+l—(a/b)2m]
0 ’

2B} Ryqo|1-(a/b)™" |
2(ng, —m+1
for ng, - m+1-(a/by*" <0, y ~ (g, =m + )2m —0
|m = ng, =1+ (a/b)™ |z, instability

condition: m—-1<ng, <m

with large growth rate only form —1<m -1+ (a/b)*" <ng, <m



Review of step-function results --- plasma surface current

There 1s a surface current on the plasma surface (» = a), according to
[Strauss et al. 2010],

2B, (m-ngq,)[1+2/(yt,)]
qoRy [1=(alb)™" +2/(y7,)]

r=a+0" / /
r=a-07" =1’UP _l/}v -

K =B,

S,

where &, = im®/r =im®/a

K is of the same direction as j 4 (negative) for positive &,.. However,
[Zakharov et al. 2012] and [Webster 2010] have (equivalently):

2B, {1 _ (m=ngy)[1+ 2/(m)]}§r .y

[=K-j E =
oo, q.R, 1-(a/b)™ +2/(yt,)

The sign of 7, which is considered important to disruption physics, is the
opposite to K. How to understand this difference?



Relaxing the step-function approximation --- motivations

¢ Current density and mass density profiles in real plasmas do not have
sharp (step-function like) boundaries, and are usually not of the same
form.

¢ Direct 3D dynamical simulations have difficulties treating sharp
boundaries --- difficult to compare theory with simulation.

¢ Instead of getting a 0-function solution, which is problematic in a
linear treatment, now the first order current density 1s regular and well

behaved.

¢ The surface currents may have internal structures within the sharp
boundary --- even if either K or / 1s zero, the current density within the
boundary region can be nonzero.

¢ Resolving such internal structures might help understanding the
meaning of K or /, and the sign difference.



Eigen equation --- solved numerically along » (1D)

w), 9w
k,) oror\k

mBO 0?](])0

r or

}/2

= _ngnvil/ﬁ + Y,

5

pVi(

“Boundaries” of j , and p are at a and a,, with thickness ~ 1/x and 1/,
In general, a and a,, k and k, do not have to be the same.

_ -2B,/q,R, for k(a—r)>>1 1 forx, (a,-r)>>1
Joo — P —

0 for k(r —a) >>1, 0 fork,(r-a,)>>1
-1
—[m—nqo] for k(a—r)>>1
1 mRo f . 1 g1 QORO
k,=—|n+ 2f]¢01"d1’ —> 4 i 5
R, B,r =, ma_ | .
ng, — —; or K(r—a)>>1
\%Ro r

V2 =9 rd)r-m’/r



Some profiles used

Jpo ="— 5 erfc[k(r —a)], witha=0.5, b=1

q,R,
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The k; function

For this profile, withm=n=1, Ry =3, k=40, go=0.1, 0.2, 0.25 (dashed
curve), 0.3,0.4,0.5,0.6,0.7, 0.8, 0.9:

b1 The dotted line is the line & = 0.

1. [
b

A . Since y =iBk®, ® is singular
V — 1 atk =0 (unless v, is zero there)
; / | --- problematic unless p ~ 0.
Y S - 1 This happens only for gy > 0.25.
: | The step-function approximation
also has this 1ssue.

—oL _
; 27 11,2 ;
: d“ky/dr” 1s large near r = a for
: large K.
-3 . 1 . A B -
00 02 04 06 08 1.0



g0 and k for unstable modes

For this profile, witha =a,, k=x,m=n=1,Ry=3,By=1, 7, = 1000, g,
and « for all runs with an unstable mode are shown:

250[ " T T "7 77771 Eachrunis indicated by a

fc | symbol. Same symbol indicates
200 x ’ same K.

5ol | All x are larger than the solid

curve, meaning that p at the
point & = 0 1s less than

100 R .
i X 0.5erfc(5) ~7.7e-13.
°0r . 17 Runs with smaller « for the
o coo o | same ¢ do not find unstable
Ol modes.
0.0 0.2 0.4 0.6 0.8 1.0



Growth rate
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The solid curve in the left figure (and the dotted line in the right) 1s y for
the step-function problem. y tends to the value for the step-function
problem in the large x limit, as expected. y is small for ¢o < (a/b)” = 0.25,
as discussed above, which 1s uncommon in practice.
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First order current cf. surface current

oL o - Solid curve is the step-function
K | cemomem e analytical form:
8k At k=80 [ k=100 X: k=200 o 2B0 (m_nqo)[1+2/(y,rw)]
| qoRy [1-(alb)™" +2/(yr,)]
6 |
Symbols are integrated first
4+ - order current:
| b b
| - K =\[ judrl=|f Vipdr
I 0 0
_ L normalized for unit &,.
O T [ T
0.0 0.2 0.4 o 0.6 0.8 1.0

The integrated first order current tends to the surface current found 1n
[Strauss et al. 2010] 1n the large x limit.



I as a definition of ‘“‘residual current”

Back to the step-function problem, / can be regarded as defined by:
2B, {1 - (m—nq,)[1+ 2/(m)]}g

[=K-j E =
oo, q.R, 1-(a/b)™ +2/(yt,)

In the form of current density with j; = [d(r-a), j ;1 = Ko(r-a):
i = = i =) = 4 &, = ),

Je (convective current) has a physical meaning of moving j in &,
Joo(N) + j.(r)=j,,(r)=§, '— =~ jyo(r=§,)

Ji (or I) is then defined as the residual current by j; — j..



Analytical forms of K and /

First order current j; = —Vi% , or K, can be solved from:

: pvi(wl) ap 4 (w)
k,) Jror\k
In the large x limit, only terms with large gradient contribute:

j¢1 zjc-l_jl

mBO 0?](})0

-B,k,\V 1, +
r or

Y Y

9k, N0 .
D =~-§ 1s the convective current,
or’ or

» 9p 9P / (y o+ Bk ) is the residual current (/).
or or

¢ j.and j; do not have to have the same radial profile.

where j. =-iB,

and j, =iB.k,y

O j; x0®/dr x&,, rather than &, as in the expression of /.



A special example: / = 0 for the uniform density case (p = 1)

Since j, xdp/dr, 1t 1s zero if p 1s uniform.

In particular, for m = n = 1, the eigen equation is solved by

Vid=0,o0r ®xr, y, =iBkD o« kr
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Internal structures for gp = 0.3, a=a,=0.5, k= k,=40
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¢ growth rate 1s not small, but m — ng, 1s also not small.

O Jjrhas a similar structure as j,; (~j.), but 1s much smaller.



Internal structures for gp = 0.7, a=a,= 0.5, k= k,=100

50F — T T ] 4x104 T T T
: 3 ' /N g
7 | | A
g 2x10*F .
30 : /
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20 F ; :
i 4> ]I \ 1
C 1 —2x10° L .
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O Jjs has a clear internal structure with both signs, and is zero at a point
in between.

O jris getting larger and shifting to the right of 5.
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Interna

20 F

10 F

0.48 0.49

0.50

2x10°

1x10°F

—1x10°F

0.48 0.49 0.250 0.91 0.92

| structures for gp = 0.9, a=a,=0.5, k= kK, =200

/ \]C
\

O Jjs has anegative peak stronger than the positive peak, but the total
integrated current is still positive but small (K ~ 0).

¢ jris large and shifted much to the right of j. so that the two have only a

small overlap portion.

O In the quasi-linear sense, the j , profile will be modified to be very
different from the p profile, which 1s carried by the flow.

BBBBB



Shifted density case: go=0.7,a =0.5,a,=0.55, k= k,=200

60"—\"‘1“ T T 1x105v|||||l]'lI]er]"
Tea ] r .

5x10*
40 :
0
20 - . _
~5x10*
oL v —Ax10°
048 050 052 054 056 0.58 0.48 050 052 054 056 0.58

O J; has two distinct structures: a positive one ~ j., and a negative one ~
Jr
¢ The two structures carry similar magnitude of opposite current.

O Jji1s strong at location where j ~ 0. Nonlinear effects needed?

¢ ¢go=0.8, 0.9 has no unstable mode for this profile.
2 U ALASKA



Step-function model for the shifted density case

Analytic solution for m = n = 1, with growth rate:

a’ a’ 2
5 5 — Yy 5 — 4 I+—
y _ ap 1_ ap }/TW

3

2B;  Rlq; i a, L2
b* e,

reduces to the previous expression when a = a,,.

instability boundary shifted to g, < (a/ap)2 <1 (fora=0.5,a,=0.55,
do < 0826)

O since the presence of j; would generally make j ,, and p evolving into
different profiles, the stability boundary can change as well.



Comparison with M3D data --- Initial equilibrium

* R,=18, 6/a=0.1, p,/&=100, n,/n
e 190 radial zones

=l & T,/T,,.=100

10% boundary, 190 radial, before relaxation

Pseudocolor.
Vi
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Comparison with M3D data --- linear eigenmode

n=1 eigenmode
Voo is a 1,1 external kink

I 1070605,

-5.349e-06

Initial perturbation

1.070e-05
Max: 1.070ed§-
Min: -1.070e-05

19.¢

etals vt, =0.0210 + 0.00105
UP’GS = 10—6; vac ® 9.5 x 10—4; Mwall = 0

p=107; ty 4o =107
K, =10 K‘I_I =5 x 10?
density evolution off
ohmic heating on



Comparison with M3D data --- first order current density

Pseudocolor
Var: Jphipert
0.0005460
' * Rigid
—0.0002730 .
displacement of
7.5670-10 plasma column
0.0002730 * Rearrangement
0.0005460 of “vacuum” to
Min: -0.0005460. avoid compression
Vector .
Var: vpol
T oEre * 1,1 toroidal
) 8930.05 current sheets of
both signs at
1:960e-05 plasma boundary
1.026e-05
9.301e-07
Max: 4.001e-05
Min: 3.576e-08




Comparison with M3D data --- current profile
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¢ cylindrical geometry with large aspect ratio, but not RMHD, uniform p
¢ unstable mode with a main m = n = 1 component

O & 18 positive, j,; 18 mainly consistent with —d;/0r implying very weak
residual current.
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Conclusions

O

The step-function derivation of kink-mode instability has been
generalized to arbitrary background current and density profiles.

The confusion over the sign of the surface current in the literature has
been resolved by 1dentifying the analytic forms of the convective
current and residual current, which are the two components of the first
order current but have opposite signs.

The presence of the residual current can evolve the plasma current into
a profile different from that of the density. The instability condition
changes sensitively to the change of such profiles.

The residual current can be important 1f instability occurs for density
profile extends much beyond the current density profile and has sharp
gradient.

Direct 3D nonlinear simulations are needed. Our linear studies can
serve as benchmarks of 3D MHD codes.
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