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Abstract  
The surface current on the plasma-vacuum interface during a disruption event 
involving kink instability can play an important role in driving current (Halo or 
Hiro current) into the vacuum vessel. However, there have been disagreements 
over the nature or even the sign of the surface current in recent theoretical 
calculations based on idealized step-function background plasma profiles. We 
revisit such calculations by replacing step-function profiles with more realistic 
profiles characterized by strong but finite gradient along the radial direction. 
Consequently, the resulting “surface current” is no longer a delta-function current 
density, but a finite and smooth current density profile with internal structure, 
concentrated within the region with strong plasma pressure gradient. Moreover, 
this current density profile has peaks of both signs, unlike the delta-function case 
with a sign opposite to, or the same as the plasma current. We show analytically 
and numerically that such current density can be separated into two parts, with 
one of them (convective current density) having the physical meaning of 
transporting the background current density by the displacement, and the other 
part called the residual current density, which can have important effects during 
disruption if it enters the vessel wall. We will compare our results with previous 
work carried out with step-function profiles, as well as simulation data.  
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Introduction 
◊ During a major disruption in a tokamak, a kink instability can follow a 

vertical displacement event (VDE). 

◊ The current (identified as Halo or Hiro current in the literature) 
flowing into the vacuum chamber walls can have significant damaging 
effects. 

◊ There has been controversies over the nature, or even the sign, of the 
Halo/Hiro current. 

◊ Step-function derivations were used in most theoretical studies. We 
will show that it is important to relax such an approximation to help 
clearing up the sign confusion, and understanding the physical nature 
of such current. 
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Outline 
 
◊ Review of step-function results --- identify the problem 

◊ Numerical results with step-function approximation removed 

◊ Discuss the sign, and the physical nature of “surface current” 

◊ Show that the current density and mass density profiles can generally 
evolve into different forms and that could affect the instability 
condition 

◊ Conclusions 
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Review of step-function results --- problem setup 
◊ Following [Strauss et al. 2010] --- cylindrical (r, θ, φ), large aspect 

ratio (R0/b), reduced MHD  

magnetic field 

€ 

B =∇ψ × ˆ φ + B0
ˆ φ         

density ρ = 1 for r < a, 0 for a < r < b 

background current density 

€ 

jφ 0 = −∇⊥
2ψ0 =

−2B0 /q0R0  for r < a
    0             for r > a
' 
( 
) 

  

unstable mode with displacement 

€ 

ξ =∇Φ× ˆ φ ∝ei(mθ +nφ )+γt  

thin resistive wall at r = b, with resistivity ηw and thickness δ, (wall time: 

€ 

τw = δb /mηw )  

€ 

Bθ 0 = −
∂ψ0

∂r
=
1
r

jφ 0( ' r ) ' r d ' r =
rB0

R0q(r)0

r

∫
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Review of step-function results --- eigen equation 
Start with equation of motion: 

€ 

γ 2∇ ⋅ (ρ∇⊥Φ) = B0 ⋅ ∇∇⊥
2ψ1 + B1 ⋅ ∇∇⊥

2ψ0  
using equation for magnetic potential: 

€ 

ψ1 = B0 ⋅ ∇Φ = iB0k||Φ,  with

 k|| =
1
R0

n − m
q(r)

' 

( 
) 

* 

+ 
, =

1
R0

n +
mR0

B0r
2 jφ 0 . r d . r 

0

r

∫
' 

( 
) 

* 

+ 
, =

−1
q0R0

m − nq0[ ]   for r < a

1
q0R0

nq0 −
ma2

r2

' 

( 
) 

* 

+ 
,   for r > a 

0 

1 
2 2 

3 
2 
2 

 

First order magnetic field: 

€ 

B1 =∇ψ1 × ˆ φ =
imψ1

r
ˆ r − ∂ψ1

∂r
ˆ θ 

 

€ 

⇒   γ 2∇ ⋅ ρ∇⊥

ψ1

k||

) 

* 
+ 

, 

- 
. = −B0

2k||∇⊥
2ψ1 +

2mB0
2

q0R0r
δ(r − a)ψ1 
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Review of step-function results --- eigen mode solution 

€ 

∇⊥
2ψ1 = 0 for 0 ≤ r < a,  a < r < b,  b < r  

€ 

boundary conditions :  ψ1 = 0 at r = 0 and r→∞  

€ 

∇⊥
2 = ∂r (r∂r) /r −m

2 /r2  

€ 

ψ1 =

ψ p =ψ1α r /a( )m  ,                      for 0 ≤ r < a
ψv =ψ2α r /a( )m +ψ3α a /r( )m  ,  for  a < r < b
ψx =ψ4α b /r( )m  ,                      for  b < r     

% 

& 
' 

( 
' 

 
 

€ 

at r = a,  ψ p =ψv,  
γ 2

B0
2 $ ψ p = k||

2 $ ψ v − $ ψ p( ) − 2mk||

q0R0a
ψ p  

€ 

at r = b,  ψx =ψv,  γδψx =ηw & ψ x − & ψ v( ) 

€ 

solve ψ2α ,  ψ3α ,  ψ4α  in terms of ψ1α  and obtain equation for γ :  
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Review of step-function results --- growth rate 

€ 

γ 2

2B0
2 = −

1+ 2 /(γτw )[ ]k||2

1− (a /b)2m + 2 /(γτw )
−

k||
R0q0

=
m − nq0
R0
2q0
2 1−

(m − nq0) 1+ 2 /(γτw )[ ]
1− (a /b)2m + 2 /(γτw )

% 
& 
' 

( 
) 
* 

 
Third order algebraic equation --- can be solved exactly.  

€ 

In the limit of τw →∞ for a highly conducting wall, 

€ 

for nq0 −m +1− (a /b)2m > 0, γ
2

2B0
2 ≈

m − nq0( ) nq0 −m +1− (a /b)2m[ ]
R0

2q0
2 1− (a /b)2m[ ]

€ 

for nq0 −m +1− (a /b)2m < 0, γ ≈
2 nq0 −m +1( )

m − nq0 −1+ (a /b)2m[ ]τw
→ 0

 instability 
condition: 

€ 

m −1< nq0 < m  

€ 

with large growth rate only for m −1< m −1+ (a /b)2m < nq0 < m
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Review of step-function results --- plasma surface current 
There is a surface current on the plasma surface (r = a), according to 
[Strauss et al. 2010],  

€ 

K = B1θ r= a−0+

r= a+0+

= $ ψ p − $ ψ v = −
2B0
q0R0

(m − nq0) 1+ 2 /(γτw )[ ]
1− (a /b)2m + 2 /(γτw )[ ]

ξ r  

€ 

where ξr = imΦ /r = imΦ /a 
K is of the same direction as jφ0 (negative) for positive ξr. However, 
[Zakharov et al. 2012] and [Webster 2010] have (equivalently): 

€ 

I = K − jφ 0ξr =
2B0
q0R0

1−
(m − nq0) 1+ 2 /(γτw )[ ]
1− (a /b)2m + 2 /(γτw )

' 
( 
) 

* 
+ 
, 
ξ r ∝γ

2

 

The sign of I, which is considered important to disruption physics, is the 
opposite to K. How to understand this difference? 
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Relaxing the step-function approximation --- motivations 
◊ Current density and mass density profiles in real plasmas do not have 
sharp (step-function like) boundaries, and are usually not of the same 
form. 
◊ Direct 3D dynamical simulations have difficulties treating sharp 
boundaries --- difficult to compare theory with simulation. 

◊ Instead of getting a δ-function solution, which is problematic in a 
linear treatment, now the first order current density is regular and well 
behaved. 
◊ The surface currents may have internal structures within the sharp 
boundary --- even if either K or I is zero, the current density within the 
boundary region can be nonzero. 
◊ Resolving such internal structures might help understanding the 
meaning of K or I, and the sign difference. 
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Eigen equation --- solved numerically along r (1D) 

€ 

γ 2 ρ∇⊥
2 ψ1
k||

' 

( 
) 

* 

+ 
, +

∂ρ
∂r

∂
∂r

ψ1
k||

' 

( 
) 

* 

+ 
, 

. 

/ 
0 

1 

2 
3 = −B0

2k||∇⊥
2ψ1 +

mB0
r

∂jφ 0
∂r

ψ1,  

“Boundaries” of jφ0 and ρ are at a and aρ, with thickness ∼ 1/κ and 1/κρ.   
In general, a and aρ, κ and κρ do not have to be the same. 

€ 

jφ 0 →
−2B0 /q0R0 for κ(a − r) >>1

0 for κ(r − a) >>1
& 
' 
( , 

€ 

ρ →
1 for κρ (aρ − r) >>1
0 for κρ (r − aρ ) >>1
& 
' 
(  

€ 

k|| =
1
R0

n +
mR0

B0r
2 jφ 0 # r d # r 

0

r

∫
% 

& 
' 

( 

) 
* →

−1
q0R0

m − nq0[ ] for κ(a − r) >>1

1
q0R0

nq0 −
ma2

r2

% 

& 
' 

( 

) 
* for κ(r − a) >>1

. 

/ 
0 0 

1 
0 
0 

€ 

∇⊥
2 = ∂r (r∂r) /r −m

2 /r2
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Some profiles used 

€ 

jφ 0 = −
B0

q0R0

erfc[κ(r − a)],  with a = 0.5, b =1
 

  
 
Normalized profiles with κ = 20, 40, 60, 80, 100, 200 
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The k|| function 
For this profile, with m = n = 1, R0 = 3, κ = 40, q0 = 0.1, 0.2, 0.25 (dashed 
curve), 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9: 

 

The dotted line is the line k|| = 0. 
 
Since 

€ 

ψ1 = iB0k||Φ, Φ is singular 
at k|| = 0 (unless ψ1 is zero there) 
--- problematic unless ρ ∼ 0. 
This happens only for q0 > 0.25. 
The step-function approximation 
also has this issue. 
 
d2k||/dr2 is large near r = a for 
large κ. 
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q0 and κ for unstable modes 
For this profile, with a = aρ, κ = κρ, m = n = 1, R0 = 3, B0 = 1, τw = 1000, q0 
and κ for all runs with an unstable mode are shown: 

 

Each run is indicated by a 
symbol. Same symbol indicates 
same κ. 
 
All κ are larger than the solid 
curve, meaning that ρ at the 
point k|| = 0 is less than 
0.5erfc(5) ~ 7.7e-13. 
 
Runs with smaller κ for the 
same q0 do not find unstable 
modes. 
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Growth rate 

  
The solid curve in the left figure (and the dotted line in the right) is γ for 
the step-function problem. γ tends to the value for the step-function 
problem in the large κ limit, as expected. γ is small for q0 < (a/b)2 = 0.25, 
as discussed above, which is uncommon in practice. 
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First order current cf. surface current 

 

Solid curve is the step-function 
analytical form: 

€ 

K =
2B0
q0R0

(m − nq0) 1+ 2 /(γτw )[ ]
1− (a /b)2m + 2 /(γτw )[ ]  

 
Symbols are integrated first 
order current: 

€ 

K = jφ1dr
0

b

∫ = ∇⊥
2ψ1dr

0

b

∫  
normalized for unit ξr. 

The integrated first order current tends to the surface current found in 
[Strauss et al. 2010] in the large κ limit.   
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I as a definition of “residual current” 
Back to the step-function problem, I can be regarded as defined by: 

€ 

I = K − jφ 0ξr =
2B0
q0R0

1−
(m − nq0) 1+ 2 /(γτw )[ ]
1− (a /b)2m + 2 /(γτw )

' 
( 
) 

* 
+ 
, 
ξ r  

In the form of current density with jI = Iδ(r-a), jφ1 = Kδ(r-a): 

€ 

jI = jφ1 − jφ 0ξ rδ(r − a) = jφ1 + ξ r
∂jφ 0
∂r

≡ jφ1 − jc  

jc (convective current) has a physical meaning of moving jφ0 in ξr: 

€ 

jφ 0(r) + jc (r) = jφ 0(r) −ξr
∂jφ 0
∂r

≈ jφ 0(r −ξr ) 

jI (or I) is then defined as the residual current by jφ1 − jc. 
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Analytical forms of K and I 
First order current 

€ 

jφ1 = −∇⊥
2ψ1 , or K, can be solved from: 

€ 

γ 2 ρ∇⊥
2 ψ1
k||

' 

( 
) 

* 

+ 
, +

∂ρ
∂r

∂
∂r

ψ1
k||

' 

( 
) 

* 

+ 
, 

. 

/ 
0 

1 

2 
3 = −B0

2k||∇⊥
2ψ1 +

mB0
r

∂jφ 0
∂r

ψ1 

In the large κ limit, only terms with large gradient contribute: 

€ 

jφ1 ≈ jc + jI
  

where 

€ 

jc = −iB0
∂ 2k||
∂r2

Φ ≈ −ξ r
∂jφ 0
∂r

 is the convective current, 

and 

€ 

jI = iB0k||γ
2 ∂ρ
∂r

∂Φ
∂r

γ 2ρ + B0
2k||

2( )  is the residual current (I). 

◊  jc and jI do not have to have the same radial profile. 
◊ 

€ 

jI ∝∂Φ /∂r∝ξθ ,  rather than ξ r as in the expression of I. 
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A special example: I = 0 for the uniform density case (ρ = 1) 
Since 

€ 

jI ∝∂ρ /∂r , it is zero if ρ is uniform. 

In particular, for m = n = 1, the eigen equation is solved by 

€ 

∇⊥
2Φ = 0, or Φ∝ r,  ψ1 = iB0k||Φ∝ k||r  

  
However, unstable modes exist only for q0 < (a/b)2 = 0.25 in this case (q0 = 
0.2 shown; dotted curve is for step-function), which is uncommon. 
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Internal structures for q0 = 0.3, a = aρ = 0.5, κ = κρ = 40 
 

  
 

◊ growth rate is not small, but m − nq0 is also not small. 
◊ jI has a similar structure as jφ1 (∼ jc), but is much smaller. 
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Internal structures for q0 = 0.7, a = aρ = 0.5, κ = κρ =100 
 

  
 

◊ jφ1 has a clear internal structure with both signs, and is zero at a point 
in between. 

◊ jI is getting larger and shifting to the right of jc. 
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Internal structures for q0 = 0.9, a = aρ = 0.5, κ = κρ =200 

  
 

◊ jφ1 has a negative peak stronger than the positive peak, but the total 
integrated current is still positive but small (K ∼ 0). 

◊ jI is large and shifted much to the right of jc so that the two have only a 
small overlap portion. 

◊ In the quasi-linear sense, the jφ0 profile will be modified to be very 
different from the ρ profile, which is carried by the flow. 
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Shifted density case: q0 = 0.7, a = 0.5, aρ = 0.55, κ = κρ =200 

  
 

◊ jφ1 has two distinct structures: a positive one ∼ jc, and a negative one ∼ 
jI. 

◊ The two structures carry similar magnitude of opposite current. 

◊ jI is strong at location where jφ0 ∼ 0. Nonlinear effects needed? 
◊ q0 = 0.8, 0.9 has no unstable mode for this profile. 
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Step-function model for the shifted density case 
Analytic solution for m = n = 1, with growth rate: 

€ 

γ 2

2B0
2 =

a2

aρ
2 − q0

% 

& 
' ' 

( 

) 
* * 

R0
2q0
2 1−

a2

aρ
2 − q0

% 

& 
' ' 

( 

) 
* * 1+

2
γτw

% 

& 
' 

( 

) 
* 

1−
aρ
2

b2
+
2
γτw

, 

- 

. 

. 

/ 

. 

. 

0 

1 

. 

. 

2 

. 

.  

◊ reduces to the previous expression when a = aρ. 
◊ instability boundary shifted to q0 < (a/aρ)

2 < 1 (for a = 0.5, aρ = 0.55, 
q0 < 0.826). 

◊ since the presence of jI would generally make jφ0 and ρ evolving into 
different profiles, the stability boundary can change as well. 



 
25 

Comparison with M3D data --- Initial equilibrium 
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Comparison with M3D data --- linear eigenmode 
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Comparison with M3D data --- first order current density 
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Comparison with M3D data --- current profile 

  
◊ cylindrical geometry with large aspect ratio, but not RMHD, uniform ρ 
◊ unstable mode with a main m = n = 1 component 
◊ ξr is positive, jφ1 is mainly consistent with −∂ jφ0/∂r implying very weak 

residual current. 
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Conclusions 
◊ The step-function derivation of kink-mode instability has been 

generalized to arbitrary background current and density profiles. 
◊ The confusion over the sign of the surface current in the literature has 

been resolved by identifying the analytic forms of the convective 
current and residual current, which are the two components of the first 
order current but have opposite signs. 

◊ The presence of the residual current can evolve the plasma current into 
a profile different from that of the density. The instability condition 
changes sensitively to the change of such profiles. 

◊ The residual current can be important if instability occurs for density 
profile extends much beyond the current density profile and has sharp 
gradient. 

◊ Direct 3D nonlinear simulations are needed. Our linear studies can 
serve as benchmarks of 3D MHD codes.
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