Error field penetration and locking to the backward wave*

J. M. Finn¹, A. J. Cole² and D. P. Brennan³

July 12, 2015

^{*}ArXiv submitted, 1-LANL, 2-Columbia U, 3-Princeton U/PPPL () + () + ()

Static error field interacting with finite frequency modes

- Known: the response to error fields is largest if the tearing mode is *weakly* stable.
- ► Observation: the response is largest if the Doppler-shifted tearing mode frequency is nearly at rest in the lab frame: $\pm \omega_r + kv \approx 0$

$$ilde{\psi}(r_t) = -rac{l_{21}}{\Delta' - \Delta(ikv)} ilde{\psi}(r_w)$$

- Real frequencies for tearing modes in several regimes: Glasser effect, diamagnetic propagation,...
- ► Torque (Maxwell stress) applied across the tearing layer:

$$N_m = -\frac{k}{2} |\tilde{\psi}(r_t)|^2 \mathrm{Im}\Delta(ikv)$$

► Although $|\tilde{\psi}(r_t)|^2$ is maximum at $v = \omega_r/k$, the torque is zero there. Weak driving torque \implies plasma locks to $v \gtrsim \omega_r/k$, not to $v \gtrsim 0$.

Simplest layer response function Δ is the Viscoresistive (VR) tearing mode

$$\Delta(\gamma) = \frac{\mu^{1/6}}{\eta^{5/6} |k_{||}'|^{1/3} B^{1/3}} \gamma \ (p'=0) \ \Delta(\gamma) = \gamma \tau_{\nu r}$$

Spontaneous modes have $\gamma \tau_{vr} = \Delta'$. Zero real frequency for both signs of Δ' .

$$\Delta' = [\tilde{\psi}']_{r_t} / \tilde{\psi}(r_t)$$
 for $\tilde{\psi}(r_w) = 0$.

$$\tilde{\psi}(r_t) = -\frac{l_{21}}{\Delta' - \Delta(ikv)} \tilde{\psi}(r_w) = -\frac{l_{21}}{\Delta' - ikv \tau_{vr}} \tilde{\psi}(r_w)$$

(ロト・日本)・モン・モン・モー のへで

Reconnected flux near maximum in locked torque balance state

The field $|\tilde{\psi}(r_t)|^2$ and torque N_m vs. $\hat{v} = kv\tau$ for the VR regime have simple structure near $\hat{v} = 0$. Equilibrium v_0 determined by flow drive (e.g. beams).

Steady state torque balance $N_v = N_m$ at tearing layer determines roots (\hat{v}) , stable or unstable.

Viscous torque $N_v \sim \mu(\hat{v}_0 - \hat{v})$ intersects at 1 or 3 equilibria. Locked state has $\hat{v} \gtrsim 0$.

900

Penetration is a bifurcation to a high reconnected flux, low flow state

Standard bifurcation picture gives penetration threshold in either error field amplitude or equilibrium flow.

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ - 国 - のへで

Reconnected flux and torque depend on Doppler shift Denom = $\Delta' - ikv \tau_{vr} = (\gamma - ikv) \tau_{vr}$. γ real \implies maximum of $|\tilde{\psi}(r_t)|^2$ is at $\hat{v} \equiv kv \tau_{vr} = 0$

Locus of roots for VR tearing mode, $\omega \rightarrow \omega + kv$

Max. linear response is for $\Delta' \lesssim 0$ and $\nu = 0$.

$$N_m = -\frac{k^2 l_{21}^2 |\tilde{\psi}(r_w)|^2}{2} \frac{v \tau_{vr}}{\Delta'^2 + k^2 v^2 \tau_{vr}^2} \propto -\frac{v}{c_0^2 + v^2} \quad \text{(Well quoted)}$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Resistive-inertial (RI) regime, p' = 0

$$\Delta(\gamma) = \frac{\rho^{1/4}}{\eta^{3/4} |k'_{||}|^{1/2} B^{1/2}} \gamma^{5/4} \quad \Delta(\gamma) = \gamma^{5/4} \tau_{ri}^{5/4}$$
Real γ for $\Delta' > 0$; For $\Delta' < 0$, $\gamma \tau_{ri} = |\Delta'|^{4/5} e^{\pm 4\pi i/5}$
 $|\tilde{\psi}(r_t)|^2 = \frac{l_{21}^2 |\tilde{\psi}(r_w)|^2}{|\Delta' - (ikv\tau_{ri})^{5/4}|^2} \sim \frac{1}{|(\gamma\tau_{ri})^{5/4} - (ikv\tau_{ri})^{5/4}|^2} \sim \frac{1}{|\gamma - ikv|^2}$
N. B. denom is $(\Delta' - \Delta_r(ikv\tau_{ri}))^2 + \Delta_i(ikv\tau_{ri})^2$, not $\Delta'^2 + (\cdots)^2$

RI with *p'* and parallel dynamics leads to "Glasser effect" and complex roots

C.c. complex roots if $\Delta' < \Delta_{min} = 2.0 |D|^{5/6}$, These roots stabilized if $\Delta' < \Delta_{crit} = 1.13 |D|^{5/6}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

RI with Glasser effect has penetrated state near zero torque at significant \hat{v}

$$N_m \propto -\frac{\Delta_i (ikv\tau_{ri})}{(\Delta' - \Delta_r (ikv\tau_{ri}))^2 + \Delta_i (ikv\tau_{ri})^2}$$

Numerator = 0 near where denominator minimum; $\Delta_i = 0$ at $\omega_r = kv$

- Note pronounced peaks in $|\tilde{\psi}(r_t)|^2$ off axis.
- ► Viscous torque $N_v(v) \propto \mu(v_0 - v)$ for small μ intersects at $v \ge \omega_r/k$. Fields are locked to the static error field, but the plasma flow is locked to finite value, $v \ge \omega_r/k$ rather than $v \ge 0$.
- For very small μ two other states are possible, L-stable; R-unstable.

900

Finite \hat{v} **persists in RI with Glasser as** $\Delta' \rightarrow \Delta_c -$ Numerator = 0 near where denominator minimum; $\Delta_i = 0$ at $\omega_r = kv$

Δ 'strongly stable

 Δ' marginally stable

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Penetration bifurcation diagram in RI

Plasma velocity locks to $v \gtrsim \omega_r/k$ and penetrated flux has maximum for $\hat{v}_0 > 0$

VR regime with p' and parallel dynamics also has complex roots

Numerical computations of the VR dispersion relation, using the constant- ψ approximation

 $\Delta(\hat{v})$ is non-monotonic in a range of c_s . $\Delta' \leq \Delta_2$ or $\Delta' \gtrsim \Delta_1 \implies$ complex roots. Glasser effect in VR!

▲□▶▲□▶▲□▶▲□▶ □ のQで

Glasser Effect in VR Regime

Locus of roots similar to RI. Torque curve similar too.

Two new roots for negative v present in VR too.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Nonlinear effects

- For $|\tilde{\psi}(r_w)|$ large enough and $|\gamma ikv|$ small and $\Delta' \leq 0 |\tilde{\psi}(r_t)|$ and hence locked island can become large enough $W \sim \delta$ to enter the Rutherford regime.
- ► For $|\tilde{\psi}(r_t)|$ larger, the *Scott regime* can be entered, when $k'_{||}Wc_s \sim \omega_r$. Island flattening (for $\omega_r = \omega_*$).

▲□▶▲□▶▲□▶▲□▶ □ のQで

Conclusions

- For tearing modes with real frequencies, the peak response $\tilde{\psi}(r_t)$ is for weakly stable modes but also
- The peak response is for $v = \omega_r/k$ for the backward wave.
- ► Torque N_m is *zero* at $v = \omega_r/k$; for small driving torque, the fields lock to zero frequency, but the *plasma* locks to $v \ge \omega_r/k$ rather than $v \ge 0$. Source of flow.
- Effect seen for RI with D < 0 and parallel dynamics; Glasser effect and so $v = \omega_r / k$ in VR! There are two new flow roots, L stable, R unstable.
- ▶ Who cares? E.g. error fields with (m_1, n_1) and (m_2, n_2) w/ $m_1/n_1 \neq m_2/n_2$; plasma can lock to two different velocities at $q(r) = m_1/n_1$ and $q(r) = m_2/n_2$ and with *NTV* can lead to smooth rotation shear in between.

Conclusions

- In other regimes, there are real frequencies, often ω_r ∝ ω_{*}, not c.c.
- A point about regimes: the unlocked (high-slip) state can be in one tearing regime and the locked state in another (or even be nonlinear).
- ► For slow flow, e.g. $v/v_A \sim 10^{-3}$ and very stable, locked state has small $\tilde{\psi}(r_w)$ and small islands, $W \sim \delta$ Rutherford regime. These calculations with $v \gtrsim \omega_r/k$ are still qualitatively OK.
- ► For locked state with $\tilde{\psi}(r_w)$ even larger (larger flow or larger Δ'), Scott regime $k'_{||}Wc_s \sim \omega_r$... pressure gradient flattens due to sound wave and propagation slows.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For ω_r due to pressure-curvature, does a Scott-effect occur?
 Probably.