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Static error field interacting with finite frequency modes

Known: the response to error fields is largest if the tearing mode
is weakly stable.

Observation: the response is largest if the Doppler-shifted tearing
mode frequency is nearly at rest in the lab frame: o, + kv =~ 0
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Real frequencies for tearing modes in several regimes: Glasser
effect, diamagnetic propagation,...

Torque (Maxwell stress) applied across the tearing layer:
k ~ 2 .
Ny, = —§|l//(rt)| ImA(ikv)
Although |(r)|? is maximum at v = @, /k, the torque is zero

there. Weak driving torque = plasma locks to v 2 @, /k, not to
v 2 0.



Simplest layer response function A is the Viscoresistive (VR)
tearing mode
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Spontaneous modes have y1,, = A’. Zero real frequency for both
signs of A’

A =[],/ #(r2) for (1) =0.

_ by " _ by .
W) === aiion) V) =~ ", P 0w)



Reconnected flux near maximum in locked torque balance state

The field |(r;)|? and torque
N, vs. v = kvt for the VR wr)f?
regime have simple structure
near Vv = 0.

Equilibrium vg determined by
flow drive (e.g. beams).
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Steady state torque balance
N, = N, at tearing layer deter-
mines roots (), stable or unsta-
ble.
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Viscous torque N, ~ (i — V)
intersects at 1 or 3 equilibria. o
Locked state has ¥ 2 0. s 2 A




Penetration is a bifurcation to a high reconnected flux, low flow
state

Standard bifurcation picture gives penetration threshold in either error
field amplitude or equilibrium flow.
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Reconnected flux and torque depend on Doppler shift
Denom = A’ — ikvt,, = (y— ikv)T,,. Y real = maximum of
| (re)|?is at 0 = kvt,, =0

w+kv

Max. at kv=0

Locus of roots for VR tearing mode, @ — w + kv

Max. linear response is for A’ < 0 and v = 0.
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Resistive-inertial (RI) regime, p’ = 0
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N. B. denom is (A" — A,(ikvf,,-))z + A (ikvt,)?, not A2 4 (---)?

\ & Wl Roots for RI mode,
? ® — O+ kv.
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RI with p’ and parallel dynamics leads to “Glasser effect” and
complex roots
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Locus of roots for RI D < 0,

A(yr) vs. yT showing A pin © — ® -+ kv

C.c. complex roots if A" < Apin = 2.0|D|5/ 6 These roots stabilized if
A’ < Agir = 1.13|D>/0



RI with Glasser effect has penetrated state near zero torque at
significant v

A,‘(I'kV’Cr,')
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Numerator = 0 near where denominator minimum; A; = 0 at @, = kv
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» Note pronounced peaks in
| (re)|? off axis.

» Viscous torque
N, (v) e u(vp — v) for small
U intersects at v 2> @, /k.
Fields are locked to the static
error field, but the plasma
flow is locked to finite value, b
v 2 o,/ k rather than v 2 0. Ny N

» For very small u two other —
states are possible, L-stable; T~ A
R-unstable.
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Finite 0 persists in RI with Glasser as A’ — A —
Numerator = 0 near where denominator minimum; A; = 0 at @, = kv
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Penetration bifurcation diagram in RI

Plasma velocity locks to v 2 ®,/k and penetrated flux has maximum
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VR regime with p’ and parallel dynamics also has complex roots

Numerical computations of the VR dispersion relation, using the
constant-y approximation
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A(V) is non-monotonic in arange of ¢s. A’ < Ajor A" 2 A} =
complex roots. Glasser effect in VR!



Glasser Effect in VR Regime
Locus of roots similar to RI. Torque curve similar too.

Two new roots for negative v present in VR too.
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Nonlinear effects

» For |{(r, )| large enough and |y — ikv| small and A" < 0 |§(ry)]
and hence locked island can become large enough W ~ o to
enter the Rutherford regime.

» For |{(r;)| larger, the Scott regime can be entered, when
k|’| Wes ~ @,. Island flattening (for @, = ®,).

x103
3




Conclusions

For tearing modes with real frequencies, the peak response (r;)
is for weakly stable modes but also

The peak response is for v = o, /k for the backward wave.

Torque N, is zero at v = ®, / k; for small driving torque, the
fields lock to zero frequency, but the plasma locks to v 2 @,/ k
rather than v 2> 0. Source of flow.

Effect seen for RI with D < 0 and parallel dynamics; Glasser
effect and so v = @, /k in VR! There are two new flow roots, L
stable, R unstable.

Who cares? E.g. error fields with (my, n1) and (mo, np) w/
my/ny # my/ny; plasma can lock to two different velocities at
q(r) = mi/ny and q(r) = my/ny and with NTV can lead to
smooth rotation shear in between.



Conclusions

In other regimes, there are real frequencies, often w, < @,, not
c.C.

A point about regimes: the unlocked (high-slip) state can be in
one tearing regime and the locked state in another (or even be
nonlinear).

For slow flow, e.g. v/va ~ 103 and very stable, locked state has
small §(r, ) and small islands, W ~ & — Rutherford regime.
These calculations with v 2 @,/ k are still qualitatively OK.

For locked state with {/(r,, ) even larger (larger flow or larger
A), Scott regime k"‘ Wes ~ @, ... pressure gradient flattens due
to sound wave and propagation slows.

For o, due to pressure-curvature, does a Scott-effect occur?
Probably.



