Development of the Quiescent Regime to Understand Runaway Electron Dissipation

By C. Paz-Soldan¹

with

- N. Eidietis,¹ E. Hollmann,² R. Moyer,² P. Aleynikov,⁴
- N. Commaux,³ C. Cooper,⁵
- R. Granetz,⁶ B. Grierson,⁷
- R. La Haye,¹ T. Petrie,¹
- D. Shiraki,³ E. Strait¹
- ¹ General Atomics
 ² University of California, San Diego
 ³ Oak Ridge National Laboratory
 ⁴ Max-Planck Institut, Greifswald
 ⁵ Oak Ridge Associated Universities
 ⁶ Massachusetts Institute of Technology
 ⁷ Princeton Plasma Physics Laboratory

Presented at the **PPPL Disruption Workshop**

July 14, 2015

Outline

- Quiescent runaway electron (QRE) regime and Dreicer growth
- Recap of QRE dissipation with Deuterium
- Extension to QRE decay with Nitrogen
- Progress towards constraining QRE energy distributions
- Non-thermal origin of the low density stability limit

Very Low Density Operation on DIII-D Excites Runaway Electrons Through the Primary (Dreicer) Mechanism

• QRE scenario execution:

- Ohmic plasma
- Turn off gas and wait
- Good error field correction avoids locked modes
- Density is <u>way</u> below standard DIII-D scenarios
- Dreicer growth mechanism (thermal runaway) exponentially sensitive to density
 - Linear ohmic confinement keeps T_e constant vs. n_e

Density Must Be Below a Certain Level to Observe RE Signals — Primary Growth Rate is Extremely Sensitive

Has the appearance of a 'critical' density condition

- Slightly higher density case shows no RE HXR
- Dropping density by ~25% yields ~1000x HXR increase
- All parameters important to RE growth well measured:
 - Contribution from primary and secondary mechanisms [#] calculated
- Extreme sensitivity consistent with Dreicer calculation
 - RE onset is not anomalous

Modeling of Primary-only QRE Growth with Fokker-Planck CODE Shows Formation of High Energy Tail

- f(E) modeling done with 0D Fokker-Planck code (called CODE) [(old version)]
 - Model QRE parameters
- Confirms extension of canonical Dreicer tail
 - Avalanche (secondaries) would raise level @ fixed slope

Time Delay Between Different RE Diagnostic Sensitivities Consistent with Free-fall Time

RE signature seen on many RE diagnostics

- We will return to this later

 HXR ⇒ Synch. Time delay consistent with free-fall time from ~2 to 25 MeV

6

VAL FUSION FACILIT

SAN DIEGO

Drift Orbit Losses Set High-energy Limit in Outer Radius

Paz-Soldan/PPPL-TDW/07-2015

A. Wingen, ORNL 075-15/CPS/rs

SAN DIEGO

Drift Orbit Losses Set High-energy Limit in Outer Radius Consistent with HFS Synchrotron Emission Extent

Synchrotron Spectrum Provides Second Check on Maximum RE Energy, Consistent with Orbit Loss Limit

Paz-Soldan/PPPL-TDW/07-2015

- Orbit sets max energy to ~40 MeV
 - Larger orbits scrape off LFS wall
- Note relative absence of synch emission outside mid-radius
 - REs must be >25 MeV to be detected by synchrotron
- Synchrotron spectrum consistent with drift orbit limit,
 - max power at 30 MeV
 - confirms low pitch angle at highest energies

Outline

- Quiescent runaway electron (QRE) regime and Dreicer growth
- Recap of QRE dissipation with
 Deuterium
- Extension to QRE decay with Nitrogen
- Progress towards constraining QRE energy distributions
- Non-thermal origin of the low density stability limit

Gas Puffing Introduced to Dissipate QRE Populations After Several Seconds of Growth

7

6

Gas Puffing Introduced to Dissipate QRE Populations After Several Seconds of Growth

- Electron density follows a target waveform
- Increase target at fixed time
 Gas puff enters
- RE emission goes from growth to decay
- Analyze HXR growth rate during stationary phase
 - Later we discuss other diagnostics

Transition from RE Growth to Decay Found to Occur ~4X Below Rosenbluth Density (Above E-crit)

Stationary windows selected

- 1-2 second long slices
- Equilibrium parameters stationary and measurable

HXR growth rate measured

 Transition at anomalously large E/Ecrit

Paz-Soldan et al, PoP 2014 reprinted in Granetz et al, PoP 2014 also Granetz invited IAEA, APS

Paz-Soldan/PPPL-TDW/07-2015

075-15/CPS/rs

Synchrotron Emission Movies Show Qrowth and Decay Process, As Well as Impact of Magnetic Islands

- <u>157214</u>: D2 dissipation example
 - Note shape is not significantly affected through process
- <u>157209: RE population dumped</u> when island opens
 - No longer quiescent!
 - Low density operation limited by error field penetration

Outline

- Quiescent runaway electron (QRE) regime and Dreicer growth
- **Recap of QRE dissipation with Deuterium** 0.5 **Extension to QRE decay with** (m) 2 Z Nitrogen Progress towards constraining QRE -0.5 energy distributions 1.0 2.0 1.5 Non-thermal origin of the low **R (m)** density stability limit

Discharge Setup Allows Easy Comparison of Low-Z and High-Z gas Dissipation — Controlling Electron Density

- Feed-forward nitrogen puff
 - D2 on density feedback
- Nitrogen selected to ensure burn-through in low power Ohmic plasmas
 - No bound electrons !
- Diagnostic neutral beam (NBI) blip used for impurity CER

Multi-species CER Allows Precise Determination of "High-Z" Impurity Content and Z-effective

- 5 ms NBI blip / second
 - ½ channels tuned to carbon
 - Other ½ tuned to nitrogen
- CER analysis returns densities of each species and overall Z-effective
 - Ignore higher-Z contributions

B. Grierson, PPPL

Multi-species CER Allows Precise Determination of "High-Z" Impurity Content and Z-effective

- 5 ms NBI blip / second
 - ½ channels tuned to carbon
 - Other ½ tuned to nitrogen
- CER analysis returns densities of each species and overall Z-effective
 - Ignore higher-Z contributions
- Increasing N2 puff indeed scanned nitrogen, Z-effective

Nitrogen scan, constant Density

Multi-species CER Allows Precise Determination of "High-Z" Impurity Content and Z-effective

- 5 ms NBI blip / second
 - $\frac{1}{2}$ channels tuned to carbon
 - Other ½ tuned to nitrogen
- CER analysis returns densities of each species and overall Z-effective
 - Ignore higher-Z contributions
- Increasing N2 puff indeed scanned nitrogen, Z-effective
- Changing ratio and quantity of D2 to N2 opens exploration of Z – Ecrit space

Interplay Between Collisional and Synchrotron time Scales Sets Non-dimensional RE Regime for Experiment

$$\frac{\tau_{\rm rad}}{\tau} \equiv \hat{\tau}_{\rm rad} = \frac{3}{2} \left(\frac{m_e \ln \Lambda}{\epsilon_0} \right) \frac{n_{\rm eff}}{B^2}$$
$$= 278 \cdot \frac{n_{\rm eff} [10^{20}]}{(B[T])^2}$$

- DIII-D plateau: tau-hat~700

 n_{eff}[10²⁰]=10, B[T]=2
- DIII-D QRE: tau-hat~20
 - n_{eff}[10²⁰]=0.1, B[T]=1.5
- ITER plateau: tau-hat~70
 - n_{eff}[10²⁰]~10*, B[T]=6
- Surprisingly, DIII-D QREs are in correct RE regime for ITER !

* M. Lehnen, J. Nucl. Mat. 2015

Nitrogen Dissipation Data vs. Ecrit Shows Modest but Measurable Increase in Zero-crossing (~1 Ecrit unit)

- All red points are systemically lower than black points
 - Possible exception at highest E/Ecrit
- Nitrogen effect is thus measurable but relatively weak
- Opportunity to compare with theoretical prediction

Shift in HXR Zero-crossing with Z Comparable to Recent Aleynikov Theory, but Offset

- Increase of about 1 Ecrit unit in sustainment field and avalanche onset field as Z goes from 1 to 5
- Model says gets $1.5 \Rightarrow 2.5$,
- We see ~4⇒5

HXR Shows Hints of Growth Rate "Wall" at Lowest E/Ec, Similar Feature Found in Model

- Baseline mismatch raises the question of energy sensitivity of HXR detectors
- Could distribution function re-arrangement mask an increasing number density with a decreasing signal?
- Note growth rate "wall" expected in model, hints are seen in the data
 - More data at that E/Ec would help clarify

Paz-Soldan/PPPL-TDW/07-2015

Aleynikov et al, PRL 2015 075-15/CPS/rs

Stahl et al Finds Synch Emission can be Significantly Decreased While RE Energy Constant/Increases

- Phase space re-arrangements can decrease synch emission (SE) at constant (or increasing) number density
 - Synthetic SE diagnostic used based on CODE distribution functions
- Could explain HXR?
 - What is distribution function sensitivity of emissions

Outline

- Quiescent runaway electron (QRE) regime and Dreicer growth
- Recap of QRE dissipation with deuterium
- Extension to QRE decay with Nitrogen
- Progress towards constraining QRE energy distributions
- Non-thermal origin of the low density stability limit

QRE Growth and Decay Visible on Many Diagnostics, all Signals Decrease (at Different Rates) After Puffing

QRE Growth and Decay Visible on Many Diagnostics, all Signals Decrease (at Different Rates) After Puffing

These Diagnostics Probe Different Parts of the QRE Distribution Function — Can Infer f(E) Properties

28

SAN DIEGO

Paz-Soldan/PPPL-TDW/07-2015

Example: Aleynikov's Distribution Functions Show Increased Pitch Angle at Low E/Ecrit

- Aleynikov theory described in earlier talk
- Equal opportunity comparisons I will study anyone's distributions!!

YOUR DISTRIBUTION FUNCTION HERE

 Example: Aleynikov theory shows increased pitch angle at low E/ Ecrit ⇒ after gas puff

ECE Spectrum "Hardening" Provides Evidence for Pitch Angle Change After Gas Puff

Distribution Function Predictions Allows Convolution with Diagnostic Sensitivity Functions

- Scan E/Ecrit, but assuming:
 - Steady-state f(E)
 - # of REs constant
 - Neither is true!
- We see very strong f(E) sensitivity on all diagnostics even at constant # of REs
- Notice HXR @ top of torus actually predicted to decrease with increasing E

REs Constant

ð

#

Experimental Data Shows all HXR Diagnostics Behave Similarly, While SE Decays More Quickly

HXR decays slowly after gas puff, but all do the same

- MAYBE top is slower
- No evidence for large pitch re-arrangement, unlike ECE
- Synch is quickly growing, quickly decaying
 - Emission is very sensitive to energy
 - Final value is vis. Brems, a baseline to subtract out

Comparison of all Diagnostics with Nitrogen vs. Deuterium Shows Mainly More Absolute Emission

- Big change is large signal intensity after the puff
 - Brems depends on Z
- HXR decay rates again similar
- SE decay appears faster with Nitrogen
- Larger VB baseline in SE signals with Nitrogen

New HXR Diagnostic ("Gamma Ray Imager" = GRI) Being Deployed to Measure RE Distribution Functions

• Can directly measure HXR energy spectrum selecting from 121 spatial chords

- 30 detectors for now

- Pulse height counting gives
 0.5 MeV resolution at 1 kHz
 - On each channel!
- Current limit mode gives MHz time resolution, but no energy resolution
- First measurements in 2015

Concluding Remarks About Distribution Function Modeling

- Many (and more soon) diagnostics deployed to sense different parts of distribution function
 - Example: HXR diagnostics above the midplane do not see strong increase after gas puffing
 - Example: SE decays much faster than HXR
- Multiple diagnostics allow treatment of forward problem:
 - What is expected measurement, given distribution X function
- Inverse problem is very difficult, likely impossible for arbitrary energy and pitch angle distributions
 - Possible exception is truly energy resolved diagnostics
 - Existing attempts have only allowed single pitch angle per energy

Finally: We Should Not Forget Broadband Magnetic Fluctuations are Present Even in Quiescent Plasmas

- Internal magnetic fluctuation levels directly measured with UCLA polarimeter instrument
 - Uses faraday rotation effect to measure line-averaged <n δB> on midplane
 - First-time measurement?
- Dimensionless scaling arguments say δB/B ~1E-4 may impact RE loss
 - Correlation lengths un-measured
- Opportunity for modeling

J. Zhang, UCLA 075-15/CPS/rs

Outline

- Quiescent runaway electron (QRE) regime and Dreicer growth
- Recap of QRE dissipation with deuterium
- Extension to QRE decay with Nitrogen
- Progress towards constraining QRE energy distributions
- Non-thermal origin of the low density stability limit

LM Onset Occurs at Various Densities but Similar Levels of HXR Emission, all Preceded by ECE Blow-up

- Nearly ½ of shots in 2014 were lost to locked modes
- Density feedback or density increase did not avoid the locked mode (!)
- ECE gives LM warning ~500 ms before LM onset (!!)

LM Onset Occurs at Various Densities but Similar Levels of HXR Emission, all Preceded by ECE Blow-up

- Nearly ½ of shots in 2014 were lost to locked modes
- Density feedback or density increase did not avoid the locked mode (!)
- ECE gives LM warning ~500 ms before LM onset (!!)
- Same thing found in historic low density record discharges
 - Robust instability prediction by ECE non-thermalization

DIII-D Plasma Control System Can Now Trigger Gas Puffing Based on ECE Signal to Avoid Locked Mode

- Ensures "goldilocks" QRE population ⁽²⁾
 - Large enough to diagnose accurately
 - Small enough that locked mode avoided
- Significantly improves future experimental efficiency
- Allows examination of dissipation effect vs. "RE maturity" through time-delay and trip-level setting

Calculations of Runaway Excitation Indicate RE Could Carry "Appreciable" Current Prior to LM

- Calculation uses measurements of ne, Te, Vloop, Zeff
 - Solves primary + secondary RE generation ODE
 - See Paz-Soldan et al, PoP 2014 for details on calculation
- Finds RE current can be appreciable (~10%) prior to LM
 - May be larger locally (in core)
- Internal inductance is not found to significantly vary
 - Conjecture thermal replaced by RE current, with similar profile

Paz-Soldan/PPPL-TDW/07-2015

Concurrent Drop in Loop Voltage Indicates RE Current Fraction is Becoming Appreciable

- Recent dataset shows dropping Vloop as resistivity decreases
- Indicates REs carrying significant current

$$E_{\text{loop}} = \eta J$$
$$E_{\text{loop}} = \eta_{\text{th}} (J_{\text{tot}} - J_{\text{RE}}) + \eta_{RE} J_{\text{RE}}$$

Divergence of ECE and TS Electron Temperature is Also Observed Prior to LM Formation

- TS cooling appears concurrent with ECE non-thermalization
- Expect Ohmic power to thermal electrons to be reduced by square of RE current fraction:

$$P_{\rm ohm} = \eta J^2$$
$$P_{\rm ohm} = \eta_{\rm th} (J_{\rm tot} - J_{\rm RE})^2 + \eta_{RE} J_{\rm RE}^2$$

 Scaling laws indicate it is easier to penetrate into cold plasmas

Conclusion: We Are Developing the Quiescent Regime to Understand Runaway Dissipation

- RE onset is well characterized by primary (Dreicer) model
 - There is nothing anomalous in RE onset

• 2013 experiments scanned D2 density, 2014 used nitrogen

- Great diagnosis of impurity profiles possible
- Good range in Z and E/Ecrit accessible
- HXR zero crossing significantly above E/Ecrit with all gases
- Nitrogen increased HXR zero-crossing consistent with models

• Varied diagnostic sensitivity probes RE distribution functions

- Preliminary work shows unexpected trends, much more to do
- All possible distribution functions can be studied
- Locked modes at lowest density related to RE population itself
 - DIII-D control upgraded to avoid mode, improve future experiments

Much Scope for Further Experiments in this Regime Exist

- Comparison of high and low toroidal field @ similar densities
 - Synchrotron vs. collision rate greatly affected ((changes t-rad-hat))
- New control capabilities allow time-delay gas puff scan
 - Puff into "mature" and "immature" RE populations
- Extension of high-Z dissipation to lower E/Ecrit
 - Can we see Aleynikov's dissipation 'wall' shift with nitrogen ?
- Improved diagnostic coverage by reversing IP
 - Some diagnostics look the other way
- No DIII-D run-time given for these experiments in FY15-16
 - Vocalized interest from community would help make the case

Bonus Slides

Kinetic Equation for REs is Complex, Only Input Parameters are E, Z, t-rad-hat:

The distribution function F satisfies the relativistic Fokker-Planck equation

$$\frac{\partial F}{\partial s} + \frac{\partial}{\partial p} \left[E \cos \theta - 1 - \frac{1}{p^2} - \frac{p\sqrt{1+p^2}}{\bar{\tau}_{rad}} \sin^2 \theta \right] F$$
$$= \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \left[E \frac{\sin \theta}{p} F + \frac{(Z+1)}{2} \frac{\sqrt{p^2+1}}{p^3} \frac{\partial F}{\partial \theta} + \frac{1}{\bar{\tau}_{rad}} \frac{\cos \theta \sin \theta}{\sqrt{1+p^2}} F \right], \qquad (2)$$

Relevant parameters are E = E/Ecrit, Z-eff, and tau-rad-hat

Aleynikov PRL 2015 075-15/CPS/rs

Two Versions of Beta from EFIT Gives an Integral Measure of RE Pressure and Energy

• EFIT provides two pressures: $\beta_{pol} = 2\mu_0 \langle p \rangle / B_{\theta a}^2$

$$\beta_{\text{dia}} = 2\mu_0 \left\langle p_\perp \right\rangle / B_{\theta a}^2$$
$$\beta_{\text{dia}} = 1 + \frac{E^2 + 1}{2E} \frac{B_{t0} \Delta \phi}{20\pi I_p^2}$$

 Beta_dia is based only on diamag loop and shape:

$$\Delta \phi = -\int_{\Omega} dS_t (B_t - B_{t0})$$

• Take difference as RE grows as RE parallel pressure:

$$\beta_{\rm dia} - \beta_{\rm pol} = 2\mu_0 (\langle p \rangle - \langle p_\perp \rangle) / B_{\theta a}^2$$

$$\Delta_{\rm RE,onset} (\beta_{\rm dia} - \beta_{\rm pol}) = 2\mu_0 \langle p_{||,\rm RE} \rangle / B_{\theta a}^2$$

• Gives mean RE energy: $n_{th} = n_{th}(T_t + T_t)$

$$p_{\rm RE} = \langle n_{\rm RE} \gamma \rangle \left(m_e c^2 \right)$$

Experiment Also Revealed Interesting Changes in Rotation Reversal Behavior – Nitrogen Turned It Off!

• Needs to be revisited for changes in turbulence vs. neoclassical components

- We certainly changed collisionality by going to nitrogen...

Puffing Quickly Kills off Dreicer Source Term, Leaving Dynamics to be Dominated by the Avalanche

- Takes advantage of extreme density sensitivity of primary source
 - Cases shown from now on have "negligible" primary growth
 - Primary growth rates: $d(n_{RE})/dt < 10^5 \text{ cm}^{-3}/\text{s}$
- Gas puffing is critical to isolate the avalanche from Dreicer growth in these discharges

NATIONAL FUSION FACILIT

SAN DIEGO