Kinetic modelling of runaway electrons

Tünde Fülöp

Theory and Simulation of Disruptions Workshop

Adam Stahl PhD student

Ola Embréus PhD student

Eero Hirvijoki Postdoc Sarah Newton Visiting researcher István Pusztai Assistant professor

Collaborators:

Gergely Papp (IPP Garching) Matt Landreman (Univ Maryland) Joan Decker (EPFL)

Adam Stahl PhD student

Ola Embréus PhD student

Eero Hirvijoki Postdoc

Sarah Newton Visiting researcher

István Pusztai Assistant professor

Collaborators:

Gergely Papp (IPP Garching) Matt Landreman (Univ Maryland) Joan Decker (EPFL)

Tools	Critical field	Bump	Bremsstrahlung	GO+CODE	Runaway ions	Conclusions

1 Tools

- **2** Critical field for runaway generation
- **3** Synchrotron radiation reaction
- 4 Bremsstrahlung radiation reaction
- **5** Towards self-consistency
- **6** Dynamics of runaway ions
- Conclusions

 Tools
 Critical field
 Bump
 Bremsstrahlung
 GO+CODE
 Runaway ions
 Conclusions

 •00000
 000
 0000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Tools available for runaway studies at Chalmers

Kinetics

CODE – runaway electrons **CODION** – runaway ions

- Disruption modelling
 - GO 1D fluid code, consistent current and electric field evolution, atomic physics

Radiation

SYRUP – synchrotron spectra

Solves the kinetic equation for the electron distribution function

- 2D in momentum space, no spatial dependency
- Fully relativistic
- Runaway generation
 - Primary
 - Secondary
- Lightweight, continuum
- Very efficient steady-state solution

[Landreman, Stahl and Fülöp, CPC 185, 847 (2014)]

Tools	Critical field	Bump	Bremsstrahlung	GO+CODE	Runaway ions	Conclusions
000000						
Deee						

Recent improvements to CODE

- Synchrotron radiation reaction
- Bremsstrahlung radiation reaction
- Improved avalanche operators
- GO+CODE-related
 - Time-dependent plasma parameters
 - Momentum conserving collision operator
 - More flexible input-handling
 - Automatic grid extensions
- Full rewrite under way

 Tools
 Critical field
 Bump
 Bremsstrahlung
 G0+CODE
 Runaway ions
 Conclusions

 000000
 000
 0000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Rosenbluth-Putvinski operator

- Knock-on collision = large-angle collision
- A runaway can transfer a large amount of momentum to another particle in one collision can lead to avalanche
- If we let $p
 ightarrow \infty$ for incoming particle, the source is

$$S_{\rm RP}(p,\xi) = \frac{n_r \nu_{\rm rel}}{4\pi \ln \Lambda} \delta(\xi - \xi_2) \frac{1}{p^2} \frac{\partial}{\partial p} \left(\frac{1}{1 - \sqrt{1 + p^2}} \right)$$

[Rosenbluth and Putvinski, Nucl. Fusion 37, 1355 (1997)]

Tools Critical field Bump Bremsstrahlung GO+CODE Runaway ions 000000 000 0000 0000 0000 000 000

- Knock-on collision = large-angle collision
- A runaway can transfer a large amount of momentum to another particle in one collision can lead to avalanche
- If we let $p
 ightarrow \infty$ for incoming particle, the source is

$$S_{\mathsf{RP}}(p,\xi) = \frac{n_r \nu_{\mathsf{rel}}}{4\pi \ln \Lambda} \delta(\xi - \xi_2) \frac{1}{p^2} \frac{\partial}{\partial p} \left(\frac{1}{1 - \sqrt{1 + p^2}} \right)$$

[Rosenbluth and Putvinski, Nucl. Fusion 37, 1355 (1997)]

Problems:

- $\propto n_r$ all runaways considered to have infinite momentum
- Secondary runaways can be generated with higher energy than any of the existing runaways!
- No change to incoming particle in collision does not conserve particle number, energy or momentum

Conclusions

Tools Critical field Bump Bremsstrahlung GO+CODE Runaway ions 000 000 0000 0000 0000 0000 Rosenbluth-Putvinski operator

- Knock-on collision = large-angle collision
- A runaway can transfer a large amount of momentum to another particle in one collision can lead to avalanche
- If we let $p
 ightarrow \infty$ for incoming particle, the source is

$$S_{\rm RP}(p,\xi) = \frac{n_r \nu_{\rm rel}}{4\pi \ln \Lambda} \delta(\xi - \xi_2) \frac{1}{p^2} \frac{\partial}{\partial p} \left(\frac{1}{1 - \sqrt{1 + p^2}} \right)$$

[Rosenbluth and Putvinski, Nucl. Fusion 37, 1355 (1997)]

Problems:

- $\propto n_r$ all runaways considered to have infinite momentum
- Secondary runaways can be generated with higher energy than any of the existing runaways!
- No change to incoming particle in collision does not conserve particle number, energy or momentum

Conclusions

Tools	Critical field	Bump	Bremsstrahlung	GO+CODE	Runaway ions	Conclusions
0000●0		000000	0000	o	000	O
Chiu-	Harvev	operate	or			

An improved operator is available!

$$S_{\rm CH}(p,\xi) \propto rac{p_{\rm in}^4 f_{\xi=1}(p_{\rm in}) \sum(\gamma,\gamma_{\rm in})}{\gamma p \xi},$$

 Σ is the Møller scattering cross-section $f_{\xi=1}$ is pitch-angle averaged distribution

[S.C. Chiu, et al., Nucl. Fusion **38**, 1711 (1998), R.W. Harvey et al., Phys. Plasmas. **7**, 4590 (2000)]

Unresolved:

- All incoming runaways have $\xi = 1$ ($\theta = 0$)
- No change to incoming particle after collision – not conservative

Improvements:

- Finite p_{in}
- Secondary particle momenta restricted by kinematics
- No δ -function in ξ

Tools	Critical field	Bump	Bremsstrahlung	GO+CODE	Runaway ions	Conclusions
000000						
Chiu	Harvov	oporat	Or			

Chiu-Harvey operator

An improved operator is available!

$$S_{\rm CH}(p,\xi) \propto rac{p_{\rm in}^4 f_{\xi=1}(p_{\rm in}) \sum(\gamma,\gamma_{\rm in})}{\gamma p \xi}$$

 Σ is the Møller scattering cross-section $f_{\xi=1}$ is pitch-angle averaged distribution

 $[S.C. Chiu, et al., Nucl. Fusion $38, 1711 (1998), \\ R.W. Harvey et al., Phys. Plasmas. $7, 4590 (2000)]$

Unresolved:

- All incoming runaways have $\xi = 1$ ($\theta = 0$)
- No change to incoming particle after collision not conservative

Improvements:

- Finite p_{in}
- Secondary particle momenta restricted by kinematics
- No δ -function in ξ

Tools	Critical field	Bump	Bremsstrahlung	GO+CODE	Runaway ions	Conclusions
000000						
Chiu	Harvoy	onorat	or			

An improved operator is available!

$$S_{CH}(p,\xi) \propto \frac{p_{in}^4 f_{\xi=1}(p_{in}) \sum(\gamma,\gamma_{in})}{\gamma p \xi}$$

 Σ is the Møller scattering cross-section $f_{\zeta=1}$ is pitch-angle averaged distribution

[S.C. Chiu, et al., Nucl. Fusion **38**, 1711 (1998), R.W. Harvey et al., Phys. Plasmas. **7**, 4590 (2000)]

Unresolved:

- All incoming runaways have $\xi = 1$ ($\theta = 0$)
- No change to incoming particle after collision not conservative

Improvements:

- Finite p_{in}
- Secondary particle momenta restricted by kinematics
- No δ -function in ξ

- 1D model for plasma cooling, runaway current and electric field evolution during impurity injection
- Energy balance equations for all species, including
 - Ohmic heating
 - Line radiation and Bremsstrahlung
 - Rate equations for ionization & recombination
 - Collisional energy exchange

Tools	Critical field	Bump	Bremsstrahlung	GO+CODE	Runaway ions	Conclusions
000000		000000	0000	o	000	0
Outlin	ne					

1 Tools

2 Critical field for runaway generation

- **③** Synchrotron radiation reaction
- **④** Bremsstrahlung radiation reaction
- **5** Towards self-consistency
- **6** Dynamics of runaway ions
- Conclusions

Tools Critical field Bump Bremsstrahlung GO+CODE Runaway ions Conclusions occo

Critical field in E/E_c ramp-up

- Experiments show $E/E_c > 3-5$ needed for RE generation when ramping up E/E_c

[Granetz, et al., Phys. Plasmas **21**, 072506 (2014), Paz-Soldan et al., Phys. Plasmas **21**, 022514 (2014)]

- We study the RE dynamics using CODE
- Two effects contribute to explain the observation

Critical field Tools Bump Runaway ions Conclusions 000

Critical field in E/E_c ramp-up

• Experiments show $E/E_c > 3-5$ needed for RE generation when ramping up E/E_c

[Granetz, et al., Phys. Plasmas 21, 072506 (2014), Paz-Soldan et al., Phys. Plasmas 21, 022514 (2014)]

- We study the RE dynamics using CODE
- Two effects contribute to explain the observation
 - Dreicer growth rate strongly T_e dependent at fixed E/E_c - $E/E_D > 1\%$ -2% is required for substantial growth 10000 og₁₀ (n_e⁻¹ dn_r/dt) [s⁻ E/E0=1 3000 1000 T_e [eV] -8 300 0.7 -12 100 0.02 -16 30 10 -20 1.223510 30 100 300 E/E_c

Tools Critical field Bump Bremsstrahlung GO+CODE Runaway ions Conclusions

Critical field in E/E_c ramp-up

- Experiments show $E/E_c > 3-5$ needed for RE generation when ramping up E/E_c

[Granetz, et al., Phys. Plasmas **21**, 072506 (2014), Paz-Soldan et al., Phys. Plasmas **21**, 022514 (2014)]

- We study the RE dynamics using CODE
- Two effects contribute to explain the observation
 - Dreicer growth rate strongly T_e dependent at fixed E/E_c
 - $\mathit{E}/\mathit{E_D} > 1\%\text{--}2\%$ is required for substantial growth
 - Synchrotron radiation reaction leads to reduction in growth rate for small E/E_c
 - Synchrotron effects important for high T_e and low n_e
 - Runaway dynamics qualitatively different in disruption and flat-top scenarios

What about E/E_c ramp-down?

Tools Critical field Bump Bremsstrahlung G0+CODE Runaway ions Conclusions 00000 000 0000 000 0 000 0

Runaway growth-to-decay transition

- Build up RE tail, then ramp down E/E_c
- In experiments, visual synchrotron and HXR signals transitions from growth to decay at $E/E_c=$ 3–5

[Paz-Soldan et al., Phys. Plasmas 21, 022514 (2014)]

• Simulations (including avalanche generation) show transition in RE growth at only slightly above $E_c~(\sim 1.1)$

BUT

ToolsCritical fieldBumpBremsstrahlungGO+CODERunaway ionsConclusions00000000000000000000000000000

Runaway growth-to-decay transition

Synchrotron emission agrees with experiments!

[Stahl, Hirvijoki, Decker, Embréus and Fülöp, PRL 114, 115002 (2015)]

 Tools
 Critical field
 Bump
 Bremsstrahlung
 GO+CODE
 Runaway ions
 Conclusions

 000000
 00
 0000
 0000
 0
 000
 0
 000
 0

Runaway growth-to-decay transition

Synchrotron emission agrees with experiments!

- Emitted synchrotron power sensitive to particle energies and pitches
- Observed reduction is not RE decay but redistribution of REs in momentum space
- Runaways are still gaining energy when the emission declines

[Stahl, Hirvijoki, Decker, Embréus and Fülöp, PRL 114, 115002 (2015)]

Tools	Critical field	Bump	Bremsstrahlung	GO+CODE	Runaway ions	Conclusions
000000	000	000000	0000	o	000	O
Outli	ne					

1 Tools

2 Critical field for runaway generation

3 Synchrotron radiation reaction

- ④ Bremsstrahlung radiation reaction
- **5** Towards self-consistency
- **6** Dynamics of runaway ions
- Conclusions

 Tools
 Critical field
 Bump
 Bremsstrahlung
 GO+CODE
 Runaway ions
 Conclusions

 000000
 000
 0000
 0000
 0
 0
 0
 0

Qualitative effects of synchrotron radiation reaction

- Radiation reaction increases with perpendicular momentum.
- Runaway region shrinks to a region of small perpendicular momenta.
- Pitch-angle scattering of electrons out of the runaway region leads to an exponential decay of the electron distribution in the far-tail.
- Return fluxes of electrons into the runaway region due to collisional friction and radiation reaction can overcome the outflow due to pitch-angle scattering.

ToolsCritical fieldBumpBremsstrahlungGO+CODERunaway ionsConclusions0000000000000000000000000000000000000

Threshold for bump appearance

• Synchrotron radiation

$$\sigma = \frac{\tau_c}{\tau_r} = \frac{2}{3\ln\Lambda} \frac{\Omega_e^2}{\omega_{pe}^2}$$

• Electric field

$$\bar{E} = \frac{E/E_c - 1}{2(1 + Z_{\text{eff}})}$$

• Threshold for bump formation $\sigma > \sigma_0$

$$\sigma_0 = \frac{3\kappa/\bar{E} + \sqrt{8 + \kappa^2/\bar{E}^2}}{2(\kappa^2/\bar{E}^2 - 1)}$$

[Hirvijoki, Pusztai et al, to appear in JPP 2015]

100

Tools Critical field Bump Runaway ions Conclusions 000000

Bump location in RE tail

Location of the bump

$$p_{\parallel b, \min} \simeq \frac{(E/E_c - 1)}{(1 + Z_{\text{eff}})} \frac{(1 + \sigma)}{\sigma}$$

- Bump location ∝ typical runaway energy.
- Bump location increases with the electric field. decreases with effective charge and decreases with synchrotron strength.

Distribution function

Tools	Critical field	Bump	Bremsstrahlung	GO+CODE	Runaway ions	Conclusions
		000000				
Effect	tive cha	rge				

Distribution function

Tools	Critical field	Bump	Bremsstrahlung	GO+CODE	Runaway ions	Conclusions
		000000				

Electron temperature

Tools	Critical field	Bump	Bremsstrahlung	GO+CODE	Runaway ions	Conclusions
000000	000	000000	0000	o	000	0
Outli	ne					

1 Tools

- **2** Critical field for runaway generation
- **③** Synchrotron radiation reaction

4 Bremsstrahlung radiation reaction

- **5** Towards self-consistency
- **6** Dynamics of runaway ions
- Conclusions

Tools	Critical field	Bump	Bremsstrahlung	GO+CODE	Runaway ions	Conclusions
			0000			
_	_	_		_		

Fast-electron Bremsstrahlung radiation reaction

- Runaways experience inelastic collisions with both ions and thermal electrons
- Bremsstrahlung is emitted radiation reaction effectively an isotropic slowing-down force
- Accounted for by a model operator,

$$C_{\rm B}^{(m)} = -\frac{\partial}{\partial \mathbf{p}} \cdot \left(\mathbf{F}_{\rm B}(\mathbf{p}) f_{e}(\mathbf{p}) \right),$$

chosen to get correct energy moment:

$$F_{\mathsf{B}}(\pmb{p}) = -\sum_{\pmb{b}} \pmb{n}_{\pmb{b}} \int \mathrm{d}\sigma_{\mathsf{e}\mathchar{-}\pmb{b}} \; \pmb{\hbar}\omega$$

How does Bremsstrahlung emission affect runaway dynamics?

Tools	Critical field	Bump	Bremsstrahlung	GO+CODE	Runaway ions	Conclusions
			0000			
_	_	_		_		

Fast-electron Bremsstrahlung radiation reaction

- Runaways experience inelastic collisions with both ions and thermal electrons
- Bremsstrahlung is emitted radiation reaction effectively an isotropic slowing-down force
- Accounted for by a model operator,

$$C_{\rm B}^{(m)} = -\frac{\partial}{\partial \mathbf{p}} \cdot \left(\mathbf{F}_{\rm B}(\mathbf{p}) f_{e}(\mathbf{p}) \right),$$

chosen to get correct energy moment:

$$F_{\rm B}(p) = -\sum_b n_b \int {
m d} \sigma_{e\text{-}b} \; \hbar \omega$$

How does Bremsstrahlung emission affect runaway dynamics?

- Bremsstrahlung stopping power $\langle eE_c$ for energies below 100–200 MeV (for typical parameters)
- Bremsstrahlung usually negligible as often $E \gg E_c$ in disruptions

RSITY OF TECHNOLOGY

Bremsstrahlung increases pitch-angle scattering – can significantly affect the distribution function!

Parameters:

 $n_e = 10^{20} \text{ m}^{-3}$, $T_e = 5 \text{ keV}$, B = 2 T, $E/E_c = 3$, $Z_{\text{eff}} = 3$

Tools	Critical field	Bump	Bremsstrahlung	GO+CODE	Runaway ions	Conclusions
			0000			
		-		-		

Bump location and energy spread

Bump location

Bump location and energy spread

Bump location and energy spread

Conclusion: Bremsstrahlung radiation moves the bump towards lower energies and less energy spread. The effect increases with n/B^2 and is not sensitive to the effective charge.

Tools 000000	Critical field	Bump 000000	Bremsstrahlung 0000	$_{\odot}^{\text{GO+CODE}}$	Runaway ions 000	Conclusions 0
Outli	ne					

1 Tools

- **2** Critical field for runaway generation
- **③** Synchrotron radiation reaction
- **④** Bremsstrahlung radiation reaction
- **5** Towards self-consistency
- **6** Dynamics of runaway ions
- Conclusions

 Tools
 Critical field
 Bump
 Bremsstrahlung
 GO+CODE
 Runaway ions
 Conclusions

 000000
 000
 0000
 000
 000
 000
 000
 000

Towards self-consistency: GO+CODE

- GO evolves the global plasma parameters. CODE is evaluated in every radial grid point and GO time step.
- Each CODE call has its own set of numerical parameters (grid resolutions, iterations etc are independent).

Bumps due to the changing E-field!

Tools	Critical field	Bump	Bremsstrahlung	GO+CODE	Runaway ions	Conclusions
000000	000	000000	0000	o		O
Outli	ne					

1 Tools

- **2** Critical field for runaway generation
- **③** Synchrotron radiation reaction
- **④** Bremsstrahlung radiation reaction
- **5** Towards self-consistency

6 Dynamics of runaway ions

Conclusions

 Tools
 Critical field
 Bump
 Bremsstrahlung
 GO+CODE
 Runaway ions
 Conclusions

 Oppnamics of runaway ions – Motivation

Synamics of runaway ions – Motivation

Motivation: Are runaway ions responsible for observed low mode number TAEs?

[Fülöp & Newton, PP 21, 080702 (2014)]

 Tools
 Critical field
 Bump
 Bremsstrahlung
 GO+CODE
 Runaway ions
 Conclusions

 Ooonoo
 ooo
 oooo
 ooo
 oo
 oo
 oo
 oo
 oo

 Dynamics of runaway ions
 O
 Motivation
 O
 O
 oo
 oo
 oo

Motivation: Are runaway ions responsible for observed low mode number TAEs?

[Fülöp & Newton, PP 21, 080702 (2014)]

- 115207
 - *B* = 2 T
 - decrease in SXR signal
 - large magnetic fluctuations
 - no runaways
- 115208
 - *B* = 2.1 T
 - SXR signal increases
 - magnetic fluctuations disappear
 - runaways present

[Koslowski, EFDA project meeting 2012]

- Largely analogous to electron runaway
- Use CODION to study ion distribution adaptation of CODE
- Significant improvement over analytical models!

- Largely analogous to electron runaway
- Use CODION to study ion distribution adaptation of CODE
- Significant improvement over analytical models!

- Key difference to electron runaway: multiple peaks in friction force
- Direction of acceleration depends on $Z/Z_{\rm eff}$

Parameters: $n_C/n_D = 0.4\%, n_{He}/n_D = 5\%, Z_{eff} = 1.2$

[Embréus, Newton, Stahl, Hirvijoki and Fülöp, Phys. Plasmas 22, 052122 (2015)]

- Typical runaway ion distribution exhibiting a large high-energy bump.
- D distribution after 2 ms of acceleration in disruption

- Typical runaway ion distribution exhibiting a large high-energy bump.
- D distribution after 2 ms of acceleration in disruption

TY OF TECHNOLOGY

• Here, $v_{\rm A}/3 \sim 30-50 v_{TD}$

Runaway ion energy too low to drive Alfvénic instabilities!

Tools	Critical field	Bump	Bremsstrahlung	GO+CODE	Runaway ions	Conclusions
000000	000	000000	0000	o	000	O
Outli	ne					

1 Tools

- **2** Critical field for runaway generation
- **③** Synchrotron radiation reaction
- **④** Bremsstrahlung radiation reaction
- **5** Towards self-consistency
- **6** Dynamics of runaway ions

Conclusions

Tools	Critical field	Bump	Bremsstrahlung	GO+CODE	Runaway ions	Conclusions
000000		000000	0000	o	000	•
Concl	usions					

Elevated critical electric field can largely be explained by

- Temperature dependence and synchrotron radiation damping of RE growth rate
- Redistribution of electrons in momentum space (for E/E_c drop)

Synchrotron bump formation in the runaway tail

• Threshold condition and location for the bump

Bremsstrahlung moves the bump towards lower energies and less energy spread

• Effect increases with n/B^2 and is not sensitive to the effective charge.

Runaway ion dynamics

• Successfully treated numerically (CODION on github)

Recent papers

- CODE: [Landreman, Stahl and Fülöp, CPC 185, 847 (2014)]
- Critical field: [Stahl, Hirvijoki, Decker, Embréus and Fülöp, PRL 114, 115002 (2015)]
- Runaway ions: [Fülöp & Newton, PP 21, 080702 (2014)], [Embréus, Newton, Stahl, Hirvijoki and Fülöp, PP 22, 052122 (2015)]

• Synchrotron:

[Hirvijoki, Pusztai, Decker, Embréus, Stahl and Fülöp, JPP (2015)], [Decker, Hirvijoki, Embréus, Peysson, Stahl, Pusztai and Fülöp, submitted to PPCF, arxiv.org/abs/1503.03881]

- EXEL-wave: [Pokol, Kómár, Budai, Stahl and Fülöp, PP 21, 102503 (2014)]
- RMP: [Papp, Drevlak, Pokol and Fülöp, to appear in JPP (2015)]

Spare slides

Location of the bump induced by Bremsstrahlung radiation reaction

LUKE/CODE comparison

Synchrotron parameter σ

Temperature evolution

• Energy balance equations for all species

$$\frac{3}{2}\frac{\partial(n_{e}T_{e})}{\partial t} = \frac{3n_{e}}{2r}\frac{\partial}{\partial r}\left(\chi r\frac{\partial T_{e}}{\partial r}\right) + P_{OH} - P_{rad} - P_{ion} + P_{c}^{eD} + P_{c}^{eZ},$$
$$\frac{3}{2}\frac{\partial(n_{D}T_{D})}{\partial t} = \frac{3n_{D}}{2r}\frac{\partial}{\partial r}\left(\chi r\frac{\partial T_{D}}{\partial r}\right) + P_{c}^{De} + P_{c}^{DZ},$$
$$\frac{3}{2}\frac{\partial(n_{Z}T_{Z})}{\partial t} = \frac{3n_{Z}}{2r}\frac{\partial}{\partial r}\left(\chi r\frac{\partial T_{Z}}{\partial r}\right) + P_{c}^{Ze} + P_{c}^{ZD}.$$

- Energy exchange in collisions: $P_c^{kl} = \frac{3}{2} \frac{n_k}{\tau_{kl}} (T_l T_k)$
- Radiation: $P_{\text{rad}} = P_{\text{Br}} + \sum_{i} P_{\text{line},i}$, and $P_{\text{line},i} = n_i n_e L_i (n_e, T_e)$.
- Impact ionization and radiative recombination determine n_i:

$$\frac{dn_i}{dt} = n_{\rm e}(I_{i-1}n_{i-1} - (I_i + R_i)n_i + R_{i+1}n_{i+1})$$

Requires externally provided neutral impurity profile.

Induction equation

• Electric field is induced to keep current constant

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial E}{\partial r}\right) = \mu_{0}\frac{\partial}{\partial t}\left(\sigma_{\parallel}E + n_{r}ec\right)_{3}$$
Instead of modelling the velocity space dynamics for the electrons that are already inside the runaway region, we only consider their total density.

$$\frac{\partial n_{r}}{\partial t} = \left(\frac{\partial n_{r}}{\partial t}\right)^{\text{Dreicer}} + \left(\frac{\partial n_{r}}{\partial t}\right)^{\text{hot-tail}} + \left(\frac{\partial n_{r}}{\partial t}\right)^{\frac{\beta}{r}} + \left(\frac{\partial n_{r}}{\partial t}\right)^{\frac{\beta}{r}} + \left(\frac{\partial n_{r}}{\partial t}\right)^{\frac{\alpha}{r}} + \frac{1}{r}\frac{\partial}{\partial r}r D_{\text{RR}}\frac{\partial n_{r}}{\partial r}.$$

ERS

[Koslowski, EFDA project meeting 2012]

Runaway growth-to-decay transition

Rosenbluth-Putvinski

Synchrotron radiation reaction

- Radiation reaction force leads to a flow towards lower particle momenta and smaller pitch-angles
- Reduces runaway rate
- Can lead to bump formation in RE tail

Without radiation reaction

With radiation reaction

