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Tools available for runaway studies at Chalmers

• Kinetics
CODE – runaway electrons

CODION – runaway ions
• Disruption modelling

GO – 1D fluid code, consistent current and electric
field evolution, atomic physics

GO+
CODE

– with G Papp (IPP Garching)
• Radiation

SYRUP – synchrotron spectra
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CODE (COllisional Distribution of Electrons)

Solves the kinetic equation for the electron distribution function

• 2D in momentum space,
no spatial dependency

• Fully relativistic
• Runaway generation

• Primary
• Secondary

• Lightweight, continuum
• Very efficient steady-state
solution

[Landreman, Stahl and Fülöp, CPC 185, 847 (2014)]
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Recent improvements to CODE

• Synchrotron radiation reaction
• Bremsstrahlung radiation reaction
• Improved avalanche operators
• GO+CODE-related

• Time-dependent plasma parameters
• Momentum conserving collision operator
• More flexible input-handling
• Automatic grid extensions

• Full rewrite under way
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Rosenbluth-Putvinski operator

• Knock-on collision = large-angle collision
• A runaway can transfer a large amount of momentum to
another particle in one collision – can lead to avalanche

• If we let p → ∞ for incoming particle, the source is

SRP(p, ξ) =
nr νrel
4π lnΛ

δ(ξ − ξ2)
1
p2

∂

∂p

(
1

1−
√

1+ p2

)
[Rosenbluth and Putvinski, Nucl. Fusion 37, 1355 (1997)]

Problems:
• ∝nr – all runaways considered to have infinite

momentum
• Secondary runaways can be generated with higher

energy than any of the existing runaways!
• No change to incoming particle in collision – does

not conserve particle number, energy or
momentum
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Chiu-Harvey operator

An improved operator is available!

SCH(p, ξ) ∝
p4
infξ=1(pin)∑(γ, γin)

γpξ
,

Σ is the Møller scattering cross-section
fξ=1 is pitch-angle averaged distribution

[S.C. Chiu, et al., Nucl. Fusion 38, 1711 (1998),
R.W. Harvey et al., Phys. Plasmas. 7, 4590 (2000)]

Improvements:
• Finite pin

• Secondary particle momenta
restricted by kinematics

• No δ-function in ξ

Unresolved:
• All incoming runaways have ξ = 1
(θ = 0)

• No change to incoming particle
after collision – not conservative
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Impurity injection: GO

• 1D model for plasma cooling, runaway current and electric
field evolution during impurity injection

• Energy balance equations for
all species, including

• Ohmic heating
• Line radiation and

Bremsstrahlung
• Rate equations for

ionization &
recombination

• Collisional energy
exchange

Energy
Ionization

Temperature

Runaways E-field

[H Smith et al, PP 13 102502 (2006);
K Gál et al, PPCF 50 055006 (2008);
H Smith et al, PPCF 51 124008 (2009);
T Fehér et al, PPCF 53 035014, (2011);
G Papp et al, NF 53 123017 (2013)]
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Critical field in E /Ec ramp-up

• Experiments show E/Ec > 3− 5 needed for RE generation
when ramping up E/Ec
[Granetz, et al., Phys. Plasmas 21, 072506 (2014),
Paz-Soldan et al., Phys. Plasmas 21, 022514 (2014)]

• We study the RE dynamics using CODE
• Two effects contribute to explain the observation

• Dreicer growth rate strongly Te dependent at fixed E/Ec
– E/ED > 1%–2% is required for substantial growth

• Synchrotron radiation reaction leads to reduction in growth
rate for small E/Ec

– Synchrotron effects important for high Te and low ne
– Runaway dynamics qualitatively different in disruption and

flat-top scenarios

What about E/Ec ramp-down?
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Runaway growth-to-decay transition

• Build up RE tail, then ramp down E/Ec

• In experiments, visual synchrotron and HXR signals transitions
from growth to decay at E/Ec = 3–5
[Paz-Soldan et al., Phys. Plasmas 21, 022514 (2014)]

• Simulations (including avalanche generation) show transition
in RE growth at only slightly above Ec (∼ 1.1)

BUT
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Runaway growth-to-decay transition

Synchrotron emission
agrees with experiments!

• Emitted synchrotron power
sensitive to particle energies
and pitches

• Observed reduction is not
RE decay but redistribution
of REs in momentum space

• Runaways are still gaining
energy when the emission
declines

P
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[Stahl, Hirvijoki, Decker, Embréus and Fülöp, PRL 114, 115002 (2015)]
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Qualitative effects of synchrotron radiation reaction

• Radiation reaction increases with perpendicular momentum.
• Runaway region shrinks to a region of small perpendicular
momenta.

• Pitch-angle scattering of electrons out of the runaway region
leads to an exponential decay of the electron distribution in
the far-tail.

• Return fluxes of electrons into the runaway region due to
collisional friction and radiation reaction can overcome the
outflow due to pitch-angle scattering.

p

p

p

p

Runaway 
region

No radiation reaction With radiation reactionDistribution
function

15/33



Tools Critical field Bump Bremsstrahlung GO+CODE Runaway ions Conclusions

Threshold for bump appearance

• Synchrotron radiation

σ =
τc
τr

=
2

3 lnΛ
Ω2

e
ω2

pe

• Electric field

Ē =
E/Ec − 1
2(1+ Zeff)

• Threshold for bump
formation σ > σ0

σ0 =
3κ/Ē +

√
8+ κ2/Ē 2

2(κ2/Ē 2 − 1)

No bump

With bump

Bump outside

s0

for k=1

sL

for k=0.3

[Hirvijoki, Pusztai et al, to appear in JPP 2015]
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Bump location in RE tail
Location of the bump

p‖b,min '
(E/Ec − 1)
(1+ Zeff)

(1+ σ)

σ

• Bump location ∝ typical
runaway energy.

• Bump location increases
with the electric field,
decreases with effective
charge and decreases
with synchrotron
strength.

17/33



Tools Critical field Bump Bremsstrahlung GO+CODE Runaway ions Conclusions

Synchrotron strength

Distribution function

p‖b,min '
(E/Ec − 1)
(1+ Zeff)

(1+ σ)

σ

Runaway fraction

Parameters:
E/Ec = 3, Zeff = 1, T = 5 keV
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Effective charge

Distribution function

p‖b,min '
(E/Ec − 1)
(1+ Zeff)

(1+ σ)

σ

Runaway fraction

Parameters:
σ = 0.6, E/Ec = 3, T = 5 keV
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Electron temperature

Distribution function

p‖b,min '
(E/Ec − 1)
(1+ Zeff)

(1+ σ)

σ

Runaway fraction

Parameters:
σ = 0.6, E/Ec = 3, Zeff = 1

20/33



Tools Critical field Bump Bremsstrahlung GO+CODE Runaway ions Conclusions

Outline

1 Tools

2 Critical field for runaway generation

3 Synchrotron radiation reaction

4 Bremsstrahlung radiation reaction

5 Towards self-consistency

6 Dynamics of runaway ions

7 Conclusions

21/33



Tools Critical field Bump Bremsstrahlung GO+CODE Runaway ions Conclusions

Fast-electron Bremsstrahlung radiation reaction

• Runaways experience inelastic collisions with both ions and
thermal electrons

• Bremsstrahlung is emitted – radiation reaction effectively an
isotropic slowing-down force

• Accounted for by a model operator,
C (m)
B = − ∂

∂p ·
(
FB(p)fe(p)

)
,

chosen to get correct energy moment:
FB(p) = −∑b nb

∫
dσe-b h̄ω

How does Bremsstrahlung emission affect runaway dynamics?

• Bremsstrahlung stopping power <eEc for energies below
100–200 MeV (for typical parameters)

• Bremsstrahlung usually negligible as often E � Ec in
disruptions

22/33
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Effects of Bremsstrahlung radiation reaction

E (MeV)
0 50 100 150 200

f 
/ 

n

10
-12

10
-11

10
-10

10
-9

10
-8

S

Parameters:
ne = 1020 m−3, Te = 10 keV,
B = 0.5 T, E/Ec = 2, Zeff = 3

Bremsstrahlung increases
pitch-angle scattering –
can significantly affect
the distribution function!
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Bump location and energy spread
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Conclusion: Bremsstrahlung radiation moves the bump towards
lower energies and less energy spread. The effect increases with
n/B2 and is not sensitive to the effective charge.
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Towards self-consistency: GO+CODE

• GO evolves the global plasma parameters.
CODE is evaluated in every radial grid
point and GO time step.

• Each CODE call has its own set of
numerical parameters (grid resolutions,
iterations etc are independent).

CO
DE

 #
1

GO (t)

CO
DE

 #
2

CO
DE

 #
3

CO
DE

 #
4

CO
DE

 #
N

GO (t+1)

Bumps due to the changing E-field!

[Papp et al, EPS 2015]
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Dynamics of runaway ions – Motivation

Motivation: Are runaway ions responsible for observed low
mode number TAEs?
[Fülöp & Newton, PP 21, 080702 (2014)]

• 115207
• B = 2 T
• decrease in SXR signal
• large magnetic

fluctuations
• no runaways

• 115208
• B = 2.1 T
• SXR signal increases
• magnetic fluctuations

disappear
• runaways present

[Koslowski, EFDA project meeting 2012]
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Dynamics of runaway ions – CODION

• Largely analogous to electron runaway
• Use CODION to study ion distribution – adaptation of CODE
• Significant improvement over analytical models!
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• Key difference to electron runaway:
multiple peaks in friction force

• Direction of acceleration depends
on Z/Zeff

Parameters:
nC /nD = 0.4%, nHe /nD = 5%, Zeff = 1.2

[Embréus, Newton, Stahl, Hirvijoki and Fülöp, Phys. Plasmas 22, 052122 (2015)]
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Dynamics of runaway ions – Results

• Typical runaway ion distribution
exhibiting a large high-energy
bump.
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• D distribution after 2 ms of
acceleration in disruption

• Here, vA/3 ∼ 30-50 vTD

Runaway ion energy too low to drive Alfvénic instabilities!
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Conclusions

Elevated critical electric field can largely be explained by
• Temperature dependence and synchrotron radiation damping
of RE growth rate

• Redistribution of electrons in momentum space (for E/Ec drop)

Synchrotron bump formation in the runaway tail
• Threshold condition and location for the bump

Bremsstrahlung moves the bump towards lower energies and
less energy spread
• Effect increases with n/B2 and is not sensitive to the effective
charge.

Runaway ion dynamics
• Successfully treated numerically (CODION on github)

33/33



Recent papers

• CODE: [Landreman, Stahl and Fülöp, CPC 185, 847 (2014)]
• Critical field:

[Stahl, Hirvijoki, Decker, Embréus and Fülöp, PRL 114, 115002 (2015)]
• Runaway ions: [Fülöp & Newton, PP 21, 080702 (2014)],

[Embréus, Newton, Stahl, Hirvijoki and Fülöp, PP 22, 052122 (2015)]
• Synchrotron:

[Hirvijoki, Pusztai, Decker, Embréus, Stahl and Fülöp, JPP (2015)],
[Decker, Hirvijoki, Embréus, Peysson, Stahl, Pusztai and Fülöp, submitted to
PPCF, arxiv.org/abs/1503.03881]

• EXEL-wave: [Pokol, Kómár, Budai, Stahl and Fülöp, PP 21, 102503 (2014)]
• RMP: [Papp, Drevlak, Pokol and Fülöp, to appear in JPP (2015)]
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Spare slides
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Location of the bump induced by Bremsstrahlung
radiation reaction
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LUKE/CODE comparison
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Synchrotron parameter σ

T = 5 keV T = 10 eV
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Temperature evolution
• Energy balance equations for all species

3
2

∂(neTe)

∂t =
3ne
2r

∂

∂r

(
χr ∂Te

∂r

)
+POH−Prad−Pion +PeD

c +PeZ
c ,

3
2

∂(nDTD)

∂t =
3nD
2r

∂

∂r

(
χr ∂TD

∂r

)
+ PDe

c + PDZ
c ,

3
2

∂(nZTZ)

∂t =
3nZ
2r

∂

∂r

(
χr ∂TZ

∂r

)
+ PZe

c + PZD
c .

• Energy exchange in collisions: Pkl
c =

3
2

nk
τkl

(Tl − Tk)

• Radiation: Prad = PBr + ∑i Pline,i , and
Pline,i = nineLi (ne, Te).

• Impact ionization and radiative recombination determine ni :
dni
dt = ne(Ii−1ni−1 − (Ii + Ri )ni + Ri+1ni+1)

• Requires externally provided neutral impurity profile.
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Induction equation

• Electric field is induced to
keep current constant

1
r

∂

∂r

(
r ∂E

∂r

)
= µ0

∂

∂t

(
σ‖E + nrec

)
• Instead of modelling the

velocity space dynamics for
the electrons that are
already inside the runaway
region, we only consider
their total density.

∂nr
∂t =

(
∂nr
∂t

)Dreicer
+

(
∂nr
∂t

)hot-tail
+

(
∂nr
∂t

)γ

+

+

(
∂nr
∂t

)avalanche
+

1
r

∂

∂r r DRR
∂nr
∂r .
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[Koslowski, EFDA project meeting 2012]
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Runaway growth-to-decay transition

Rosenbluth-Putvinski
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Synchrotron radiation reaction

• Radiation reaction force leads to a flow towards lower particle
momenta and smaller pitch-angles

• Reduces runaway rate
• Can lead to bump formation in RE tail

Without radiation reaction With radiation reaction
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