Kinetic modelling of runaway electrons

Tünde Fülöp

Theory and Simulation of Disruptions Workshop

Adam Stahl PhD student

Ola Embréus PhD student

Eero Hirvijoki Postdoc

Sarah Newton Visiting researcher

István Pusztai Assistant professor

Collaborators:

Gergely Papp (IPP Garching) Matt Landreman (Univ Maryland) Joan Decker (EPFL)

Adam Stahl PhD student

Ola Embréus PhD student

Eero Hirvijoki Postdoc

Sarah Newton Visiting researcher

István Pusztai Assistant professor

Collaborators:

Gergely Papp (IPP Garching) Matt Landreman (Univ Maryland) Joan Decker (EPFL)

[Tools](#page-4-0)

- **[Critical field for runaway generation](#page-14-0)**
- **[Synchrotron radiation reaction](#page-21-0)**
- **[Bremsstrahlung radiation reaction](#page-28-0)**
- **[Towards self-consistency](#page-40-0)**
- **[Dynamics of runaway ions](#page-42-0)**
- **[Conclusions](#page-49-0)**

Tools available for runaway studies at Chalmers

• Kinetics

CODE – runaway electrons **CODION** – runaway ions

- Disruption modelling
	- **GO** 1D fluid code, consistent current and electric field evolution, atomic physics **GO+**

$$
GODE
$$
 – with G Papp (IPP Garching)

• Radiation

SYRUP – synchrotron spectra

CODE (COllisional Distribution of Electrons)

Solves the kinetic equation for the electron distribution function

- 2D in momentum space, no spatial dependency
- Fully relativistic
- Runaway generation
	- Primary
	- Secondary
- Lightweight, continuum
- Very efficient steady-state solution

 $\overline{2}$ -1 1.5 $\overline{2}$ $\mathbf{1}$ 0.5 \mathbb{Z} $\mathbf 0$ -0.5 -1 -1.5 -2 $\mathbf{1}$ $\overline{\mathbf{z}}$ 3 Ω $\overline{4}$ \bar{p}_\parallel

[Landreman, Stahl and Fülöp, CPC **185**, 847 (2014)]

Recent improvements to CODE

- Synchrotron radiation reaction
- Bremsstrahlung radiation reaction
- Improved avalanche operators
- GO+CODE-related
	- Time-dependent plasma parameters
	- Momentum conserving collision operator
	- More flexible input-handling
	- Automatic grid extensions
- Full rewrite under way

[Tools](#page-4-0) [Critical field](#page-14-0) [Bump](#page-21-0) [Bremsstrahlung](#page-28-0) [GO+CODE](#page-40-0) [Runaway ions](#page-42-0) [Conclusions](#page-49-0) 000000 \circ \circ

Rosenbluth-Putvinski operator

- Knock-on collision $=$ large-angle collision
- A runaway can transfer a large amount of momentum to another particle in one collision – can lead to avalanche
- If we let $p \rightarrow \infty$ for incoming particle, the source is

$$
S_{\text{RP}}(p,\xi) = \frac{n_r \nu_{\text{rel}}}{4\pi \ln \Lambda} \delta(\xi - \xi_2) \frac{1}{p^2} \frac{\partial}{\partial p} \left(\frac{1}{1 - \sqrt{1 + p^2}} \right)
$$

[Rosenbluth and Putvinski, Nucl. Fusion **37**, 1355 (1997)]

[Tools](#page-4-0) [Critical field](#page-14-0) [Bump](#page-21-0) [Bremsstrahlung](#page-28-0) [GO+CODE](#page-40-0) [Runaway ions](#page-42-0) [Conclusions](#page-49-0) 000000 \circ

Rosenbluth-Putvinski operator

- Knock-on collision $=$ large-angle collision
- A runaway can transfer a large amount of momentum to another particle in one collision – can lead to avalanche
- If we let $p \to \infty$ for incoming particle, the source is

$$
S_{\sf RP}(p,\xi) = \frac{n_r \nu_{\sf rel}}{4\pi \ln \Lambda} \delta(\xi - \xi_2) \frac{1}{p^2} \frac{\partial}{\partial p} \left(\frac{1}{1 - \sqrt{1 + p^2}} \right)
$$

[Rosenbluth and Putvinski, Nucl. Fusion **37**, 1355 (1997)]

Problems:

- αn_r all runaways considered to have infinite momentum
- Secondary runaways can be generated with higher energy than any of the existing runaways!
- No change to incoming particle in collision does not conserve particle number, energy or momentum

[Tools](#page-4-0) [Critical field](#page-14-0) [Bump](#page-21-0) [Bremsstrahlung](#page-28-0) [GO+CODE](#page-40-0) [Runaway ions](#page-42-0) [Conclusions](#page-49-0) \circ

Rosenbluth-Putvinski operator

- Knock-on collision $=$ large-angle collision
- A runaway can transfer a large amount of momentum to another particle in one collision – can lead to avalanche
- If we let $p \rightarrow \infty$ for incoming particle, the source is

$$
S_{\text{RP}}(p,\xi) = \frac{n_r v_{\text{rel}}}{4\pi \ln \Lambda} \delta(\xi - \xi_2) \frac{1}{p^2} \frac{\partial}{\partial p} \left(\frac{1}{1 - \sqrt{1 + p^2}} \right)
$$

[Rosenbluth and Putvinski, Nucl. Fusion **37**, 1355 (1997)]

Problems:

- αn_r all runaways considered to have infinite momentum
- Secondary runaways can be generated with higher energy than any of the existing runaways!
- No change to incoming particle in collision does not conserve particle number, energy or momentum

An improved operator is available!

$$
S_{\text{CH}}(p,\xi) \propto \frac{p_{\text{in}}^4 f_{\xi=1}(p_{\text{in}}) \sum (\gamma, \gamma_{\text{in}})}{\gamma p_{\xi}^{\pi}},
$$

Σ is the Møller scattering cross-section $\mathit{f}_{\xi=1}$ is pitch-angle averaged distribution

[S.C. Chiu, et al., Nucl. Fusion **38**, 1711 (1998), R.W. Harvey et al., Phys. Plasmas. **7**, 4590 (2000)]

Unresolved:

- All incoming runaways have $\zeta = 1$ $(\theta = 0)$
- No change to incoming particle after collision – not conservative

Improvements:

- Finite p_{in}
- Secondary particle momenta restricted by kinematics
- No *δ*-function in *ξ*

Chiu-Harvey operator

An improved operator is available!

$$
S_{\text{CH}}(p,\xi) \propto \frac{p_{\text{in}}^4 f_{\xi=1}(p_{\text{in}}) \sum (\gamma, \gamma_{\text{in}})}{\gamma p_{\xi}^{\pi}},
$$

 Σ is the Møller scattering cross-section $\mathit{f}_{\xi=1}$ is pitch-angle averaged distribution

[S.C. Chiu, et al., Nucl. Fusion **38**, 1711 (1998), R.W. Harvey et al., Phys. Plasmas. **7**, 4590 (2000)]

Unresolved:

- All incoming runaways have $\zeta = 1$ $(\theta = 0)$
- No change to incoming particle after collision – not conservative

Improvements:

- Finite p_{in}
- Secondary particle momenta restricted by kinematics
- No *δ*-function in *ξ*

An improved operator is available!

$$
S_{\text{CH}}(p,\xi) \propto \frac{p_{\text{in}}^4 f_{\xi=1}(p_{\text{in}}) \sum (\gamma, \gamma_{\text{in}})}{\gamma p_{\xi}^{\pi}},
$$

 Σ is the Møller scattering cross-section $\mathit{f}_{\xi=1}$ is pitch-angle averaged distribution

[S.C. Chiu, et al., Nucl. Fusion **38**, 1711 (1998), R.W. Harvey et al., Phys. Plasmas. **7**, 4590 (2000)]

Unresolved:

- All incoming runaways have $\zeta = 1$ $(\theta = 0)$
- No change to incoming particle after collision – not conservative

Improvements:

- Finite p_{in}
- Secondary particle momenta restricted by kinematics
- No *δ*-function in *ξ*

[Tools](#page-4-0) [Critical field](#page-14-0) [Bump](#page-21-0) [Bremsstrahlung](#page-28-0) [GO+CODE](#page-40-0) [Runaway ions](#page-42-0) [Conclusions](#page-49-0) \circ \circ **Impurity injection: GO**

- 1D model for plasma cooling, runaway current and electric field evolution during impurity injection
- Energy balance equations for all species, including
	- Ohmic heating
	- Line radiation and Bremsstrahlung
	- Rate equations for ionization & recombination
	- Collisional energy exchange

[H Smith et al, PP **13** 102502 (2006); K Gál et al, PPCF **50** 055006 (2008); H Smith et al, PPCF **51** 124008 (2009); T Fehér et al, PPCF **53** 035014, (2011); G Papp et al, NF **53** 123017 (2013)]

[Tools](#page-4-0)

[Critical field for runaway generation](#page-14-0)

- **[Synchrotron radiation reaction](#page-21-0)**
- **[Bremsstrahlung radiation reaction](#page-28-0)**
- **[Towards self-consistency](#page-40-0)**
- **[Dynamics of runaway ions](#page-42-0)**
- **[Conclusions](#page-49-0)**

[Tools](#page-4-0) [Critical field](#page-14-0) [Bump](#page-21-0) [Bremsstrahlung](#page-28-0) [GO+CODE](#page-40-0) [Runaway ions](#page-42-0) [Conclusions](#page-49-0) \bullet \circ \circ

Critical field in E/E^c ramp-up

• Experiments show $E/E_c > 3-5$ needed for RE generation when ramping up E/E_c

[Granetz, et al., Phys. Plasmas **21**, 072506 (2014), Paz-Soldan et al., Phys. Plasmas **21**, 022514 (2014)]

- We study the RE dynamics using CODE
- Two effects contribute to explain the observation

[Tools](#page-4-0) [Critical field](#page-14-0) [Bump](#page-21-0) [Bremsstrahlung](#page-28-0) [GO+CODE](#page-40-0) [Runaway ions](#page-42-0) [Conclusions](#page-49-0) \bullet \circ \circ

Critical field in E/E^c ramp-up

• Experiments show $E/E_c > 3-5$ needed for RE generation when ramping up E/E_c

[Granetz, et al., Phys. Plasmas **21**, 072506 (2014), Paz-Soldan et al., Phys. Plasmas **21**, 022514 (2014)]

- We study the RE dynamics using CODE
- Two effects contribute to explain the observation
	- **Dreicer growth rate strongly** T_e **dependent** at fixed E/E_c $E/E_D > 1\% - 2\%$ is required for substantial growth $^{0.07}$ 0.02 $\it{o}_{.7}$ $\varepsilon_{\mathcal{E}_{0.57}}$ E/E_c L^v 100 [eV] 1.2 2 3 5 10 30 100 300 10 30 300 1000 3000 10000 log10 (n −1 dnr/dt) [s -چ' dn_r/dt) [s^{−1}] −20 −16 −12 −8 −4 0

[Tools](#page-4-0) [Critical field](#page-14-0) [Bump](#page-21-0) [Bremsstrahlung](#page-28-0) [GO+CODE](#page-40-0) [Runaway ions](#page-42-0) [Conclusions](#page-49-0) 000000 \bullet 000000 0000 \circ \circ

Critical field in E/E^c ramp-up

• Experiments show $E/E_c > 3-5$ needed for RE generation when ramping up E/E_c

[Granetz, et al., Phys. Plasmas **21**, 072506 (2014), Paz-Soldan et al., Phys. Plasmas **21**, 022514 (2014)]

- We study the RE dynamics using CODE
- Two effects contribute to explain the observation
	- **Dreicer growth rate strongly** T_e **dependent** at fixed E/E_c
		- $E/E_D > 1\% 2\%$ is required for substantial growth
	- **Synchrotron radiation reaction** leads to reduction in growth rate for small E/E_c
		- **–** Synchrotron effects important for high T_e and low n_e
		- **–** Runaway dynamics qualitatively different in disruption and flat-top scenarios

What about E/E_c **ramp-down?**

[Tools](#page-4-0) [Critical field](#page-14-0) [Bump](#page-21-0) [Bremsstrahlung](#page-28-0) [GO+CODE](#page-40-0) [Runaway ions](#page-42-0) [Conclusions](#page-49-0) 000000 Ω \circ \circ

Runaway growth-to-decay transition

- Build up RE tail, then ramp down E/E_c
- In experiments, visual synchrotron and HXR signals transitions from growth to decay at $E/E_c = 3-5$

[Paz-Soldan et al., Phys. Plasmas **21**, 022514 (2014)]

• Simulations (including avalanche generation) show transition in RE growth at only slightly above E_c (\sim 1.1)

BUT

Runaway growth-to-decay transition

Synchrotron emission agrees with experiments!

[Stahl, Hirvijoki, Decker, Embréus and Fülöp, PRL **114**, 115002 (2015)]

[Tools](#page-4-0) [Critical field](#page-14-0) [Bump](#page-21-0) [Bremsstrahlung](#page-28-0) [GO+CODE](#page-40-0) [Runaway ions](#page-42-0) [Conclusions](#page-49-0) \circ

Runaway growth-to-decay transition

Synchrotron emission agrees with experiments!

- Emitted synchrotron power sensitive to particle energies and pitches
- Observed reduction is **not RE decay** but redistribution of REs in momentum space
- Runaways are still gaining energy when the emission declines

[Stahl, Hirvijoki, Decker, Embréus and Fülöp, PRL **114**, 115002 (2015)]

[Tools](#page-4-0)

[Critical field for runaway generation](#page-14-0)

[Synchrotron radiation reaction](#page-21-0)

- **[Bremsstrahlung radiation reaction](#page-28-0)**
- **[Towards self-consistency](#page-40-0)**
- **[Dynamics of runaway ions](#page-42-0)**
- **[Conclusions](#page-49-0)**

[Tools](#page-4-0) [Critical field](#page-14-0) [Bump](#page-21-0) [Bremsstrahlung](#page-28-0) [GO+CODE](#page-40-0) [Runaway ions](#page-42-0) [Conclusions](#page-49-0) ooooo

Qualitative effects of synchrotron radiation reaction

- Radiation reaction increases with perpendicular momentum.
- Runaway region shrinks to a region of small perpendicular momenta.
- Pitch-angle scattering of electrons out of the runaway region leads to an exponential decay of the electron distribution in the far-tail.
- Return fluxes of electrons into the runaway region due to collisional friction and radiation reaction can overcome the outflow due to pitch-angle scattering.

[Tools](#page-4-0) [Critical field](#page-14-0) [Bump](#page-21-0) [Bremsstrahlung](#page-28-0) [GO+CODE](#page-40-0) [Runaway ions](#page-42-0) [Conclusions](#page-49-0)

3

Threshold for bump appearance

• Synchrotron radiation

$$
\sigma=\frac{\tau_c}{\tau_r}=\frac{2}{3\ln\Lambda}\frac{\Omega_e^2}{\omega_{pe}^2}
$$

• Electric field

$$
\bar{E}=\frac{E/E_c-1}{2(1+Z_{\text{eff}})}
$$

• Threshold for bump formation $\sigma > \sigma_0$

$$
\sigma_0 = \frac{3\kappa/\bar{E} + \sqrt{8 + \kappa^2/\bar{E}^2}}{2(\kappa^2/\bar{E}^2 - 1)}
$$

Bump location (% of numerical grid) σ_0 With bump 80 2.5 for κ = $\overline{2}$ 60 No bump $^{\circ}$ 1.5 40 1 σ_{L} || 20 for $\kappa=0.3$ 0.5 Bump outside Ω $\mathbf{0}$ 0.5 1.5 $\overline{2}$ n \bar{E}

[Hirvijoki, Pusztai et al, to appear in JPP 2015]

100

[Tools](#page-4-0) [Critical field](#page-14-0) [Bump](#page-21-0) [Bremsstrahlung](#page-28-0) [GO+CODE](#page-40-0) [Runaway ions](#page-42-0) [Conclusions](#page-49-0)

Bump location in RE tail

Location of the bump

$$
p_{\parallel b,\min} \simeq \frac{(E/E_c - 1)}{(1+Z_{\rm eff})} \frac{(1+\sigma)}{\sigma}
$$

- Bump location \propto typical runaway energy.
- Bump location increases with the electric field, decreases with effective charge and decreases with synchrotron strength.

Distribution function

Electron temperature

[Tools](#page-4-0)

- **[Critical field for runaway generation](#page-14-0)**
- **[Synchrotron radiation reaction](#page-21-0)**

[Bremsstrahlung radiation reaction](#page-28-0)

- **[Towards self-consistency](#page-40-0)**
- **[Dynamics of runaway ions](#page-42-0)**
- **[Conclusions](#page-49-0)**

Fast-electron Bremsstrahlung radiation reaction

- Runaways experience inelastic collisions with both ions and thermal electrons
- Bremsstrahlung is emitted radiation reaction effectively an isotropic slowing-down force
- Accounted for by a model operator,

$$
C_{\mathsf{B}}^{(m)} = -\frac{\partial}{\partial \mathsf{p}} \cdot \Big(\mathbf{F}_{\mathsf{B}}(\mathsf{p}) f_{\mathsf{e}}(\mathsf{p}) \Big),
$$

chosen to get correct energy moment:

$$
F_{\rm B}(p) = -\sum_b n_b \int d\sigma_{e-b} \; \hbar \omega
$$

How does Bremsstrahlung emission affect runaway dynamics?

Fast-electron Bremsstrahlung radiation reaction

- Runaways experience inelastic collisions with both ions and thermal electrons
- Bremsstrahlung is emitted radiation reaction effectively an isotropic slowing-down force
- Accounted for by a model operator,

$$
C_{\mathsf{B}}^{(m)} = -\frac{\partial}{\partial \mathsf{p}} \cdot \Big(\mathsf{F}_{\mathsf{B}}(\mathsf{p}) f_{\mathsf{e}}(\mathsf{p}) \Big),
$$

chosen to get correct energy moment:

$$
F_{\rm B}(p) = -\sum_b n_b \int d\sigma_{e-b} \hbar \omega
$$

How does Bremsstrahlung emission affect runaway dynamics?

- Bremsstrahlung stopping power $\lt eE_c$ for energies below 100–200 MeV (for typical parameters)
- **Bremsstrahlung usually negligible** as often $E \gg E_c$ in disruptions

 \sim **TECHNOLOGY**

Bremsstrahlung increases pitch-angle scattering – can significantly affect the distribution function!

Bump location and energy spread

Bump location

Bump location and energy spread

Bump location

Bump energy spread

Conclusion: Bremsstrahlung radiation moves the bump towards lower energies and less energy spread. The effect increases with $n/B²$ and is not sensitive to the effective charge.

[Tools](#page-4-0)

- **[Critical field for runaway generation](#page-14-0)**
- **[Synchrotron radiation reaction](#page-21-0)**
- **[Bremsstrahlung radiation reaction](#page-28-0)**
- **[Towards self-consistency](#page-40-0)**
- **[Dynamics of runaway ions](#page-42-0)**

[Conclusions](#page-49-0)

[Tools](#page-4-0) [Critical field](#page-14-0) [Bump](#page-21-0) [Bremsstrahlung](#page-28-0) [GO+CODE](#page-40-0) [Runaway ions](#page-42-0) [Conclusions](#page-49-0) \circ

Towards self-consistency: GO+CODE

- GO evolves the global plasma parameters. CODE is evaluated in every radial grid point and GO time step.
- Each CODE call has its own set of numerical parameters (grid resolutions, iterations etc are independent).

[Tools](#page-4-0)

- **[Critical field for runaway generation](#page-14-0)**
- **[Synchrotron radiation reaction](#page-21-0)**
- **[Bremsstrahlung radiation reaction](#page-28-0)**
- **[Towards self-consistency](#page-40-0)**

[Dynamics of runaway ions](#page-42-0)

[Conclusions](#page-49-0)

[Tools](#page-4-0) [Critical field](#page-14-0) [Bump](#page-21-0) [Bremsstrahlung](#page-28-0) [GO+CODE](#page-40-0) [Runaway ions](#page-42-0) [Conclusions](#page-49-0) \circ

Dynamics of runaway ions – Motivation

Motivation: Are runaway ions responsible for observed low mode number TAEs?

[Fülöp & Newton, PP **21**, 080702 (2014)]

[Tools](#page-4-0) [Critical field](#page-14-0) [Bump](#page-21-0) [Bremsstrahlung](#page-28-0) [GO+CODE](#page-40-0) [Runaway ions](#page-42-0) [Conclusions](#page-49-0) \circ **Dynamics of runaway ions – Motivation**

Motivation: Are runaway ions responsible for observed low mode number TAEs?

[Fülöp & Newton, PP **21**, 080702 (2014)]

- 115207
	- $B = 2T$
	- decrease in SXR signal
	- large magnetic fluctuations
	- no runaways
- 115208
	- $B = 2.1$ T
	- SXR signal increases
	- magnetic fluctuations disappear
	- runaways present

[Koslowski, EFDA project meeting 2012]

- Largely analogous to electron runaway
- Use CODION to study ion distribution adaptation of CODE
- Significant improvement over analytical models!

- Largely analogous to electron runaway
- Use CODION to study ion distribution adaptation of CODE
- Significant improvement over analytical models!

- Key difference to electron runaway: multiple peaks in friction force
- Direction of acceleration depends on $Z/Z_{\rm eff}$

[Embréus, Newton, Stahl, Hirvijoki and Fülöp, Phys. Plasmas **22**, 052122 (2015)]

- Typical runaway ion distribution exhibiting a large high-energy bump.
- D distribution after 2 ms of acceleration in disruption

- Typical runaway ion distribution exhibiting a large high-energy bump.
- D distribution after 2 ms of acceleration in disruption

PSITY OF TECHNOLOGY

• Here, $v_A/3 \sim 30$ -50 v τ_D

Runaway ion energy too low to drive Alfvénic instabilities!

[Tools](#page-4-0)

- **[Critical field for runaway generation](#page-14-0)**
- **[Synchrotron radiation reaction](#page-21-0)**
- **[Bremsstrahlung radiation reaction](#page-28-0)**
- **[Towards self-consistency](#page-40-0)**
- **[Dynamics of runaway ions](#page-42-0)**

Elevated critical electric field can largely be explained by

- Temperature dependence and synchrotron radiation damping of RE growth rate
- Redistribution of electrons in momentum space (for E/E_c drop)

Synchrotron bump formation in the runaway tail

• Threshold condition and location for the bump

Bremsstrahlung moves the bump towards lower energies and less energy spread

• Effect increases with n/B^2 and is not sensitive to the effective charge.

Runaway ion dynamics

• Successfully treated numerically (CODION on github)

Recent papers

- CODE: [Landreman, Stahl and Fülöp, CPC **185**, 847 (2014)]
- Critical field: [Stahl, Hirvijoki, Decker, Embréus and Fülöp, PRL **114**, 115002 (2015)]
- Runaway ions: [Fülöp & Newton, PP **21**, 080702 (2014)], [Embréus, Newton, Stahl, Hirvijoki and Fülöp, PP **22**, 052122 (2015)]

• Synchrotron:

[Hirvijoki, Pusztai, Decker, Embréus, Stahl and Fülöp, JPP (2015)], [Decker, Hirvijoki, Embréus, Peysson, Stahl, Pusztai and Fülöp, submitted to PPCF, arxiv.org/abs/1503.03881]

- EXEL-wave: [Pokol, Kómár, Budai, Stahl and Fülöp, PP **21**, 102503 (2014)]
- RMP: [Papp, Drevlak, Pokol and Fülöp, to appear in JPP (2015)]

Spare slides

Location of the bump induced by Bremsstrahlung radiation reaction

LUKE/CODE comparison

Synchrotron parameter *σ*

Temperature evolution

• Energy balance equations for all species

$$
\frac{3}{2} \frac{\partial (n_{\rm e} T_{\rm e})}{\partial t} = \frac{3n_{\rm e}}{2r} \frac{\partial}{\partial r} \left(\chi r \frac{\partial T_{\rm e}}{\partial r} \right) + P_{\rm OH} - P_{\rm rad} - P_{\rm ion} + P_{\rm c}^{\rm eD} + P_{\rm c}^{\rm eZ},
$$

$$
\frac{3}{2} \frac{\partial (n_{\rm D} T_{\rm D})}{\partial t} = \frac{3n_{\rm D}}{2r} \frac{\partial}{\partial r} \left(\chi r \frac{\partial T_{\rm D}}{\partial r} \right) + P_{\rm c}^{\rm De} + P_{\rm c}^{\rm DZ},
$$

$$
\frac{3}{2} \frac{\partial (n_{\rm Z} T_{\rm Z})}{\partial t} = \frac{3n_{\rm Z}}{2r} \frac{\partial}{\partial r} \left(\chi r \frac{\partial T_{\rm Z}}{\partial r} \right) + P_{\rm c}^{\rm Ze} + P_{\rm c}^{\rm ZD}.
$$

- Energy exchange in collisions: $P_{\rm c}^{kl}=\frac{3}{2}$ 2 nk $\frac{n_k}{\tau_{kl}}(T_l - T_k)$
- Radiation: $P_{\text{rad}} = P_{\text{Br}} + \sum_i P_{\text{line},i}$, and $P_{\text{line }i} = n_i n_e L_i(n_e, T_e).$
- Impact ionization and radiative recombination determine n_i :

$$
\frac{dn_i}{dt} = n_e(I_{i-1}n_{i-1} - (I_i + R_i)n_i + R_{i+1}n_{i+1})
$$

• Requires externally provided neutral impurity profile.

Induction equation

• Electric field is induced to keep current constant

$$
\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial E}{\partial r} \right) = \mu_0 \frac{\partial}{\partial t} \left(\sigma_{\parallel} E + n_{\text{r}} e c \right)
$$
\n\n• Instead of modelling the velocity space dynamics for the electrons that are already inside the runaway region, we only consider their total density.\n\n
$$
\frac{\partial n_{\text{r}}}{\partial t} = \left(\frac{\partial n_{\text{r}}}{\partial t} \right)^{\text{Dreicer}} + \left(\frac{\partial n_{\text{r}}}{\partial t} \right)^{\text{hot-tail}} + \left(\frac{\partial n_{\text{r}}}{\partial t} \right)^{\text{hot-tail}} + \left(\frac{\partial n_{\text{r}}}{\partial r} \right)^{\text{f}} + \left(\frac{\partial n_{\text{r}}}{\partial r} \right)^{\text{avalanche}} + \left(\frac{\partial n_{\text{r}}}{\partial r} \right)^{\text{avalanche}}.
$$

25

UNIVERSITY OF TECHNOLOGY

[Koslowski, EFDA project meeting 2012]

Runaway growth-to-decay transition

Rosenbluth-Putvinski

Synchrotron radiation reaction

- Radiation reaction force leads to a flow towards lower particle momenta and smaller pitch-angles
- Reduces runaway rate
- Can lead to bump formation in RE tail

Without radiation reaction With radiation reaction

