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1. Overview of MHD, radiation asymmetry, and impurity spreading results from
non-rotating NIMROD MGI simulations
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Sequence of events for a (non-rotating) NIMROD MG

simulation: 1) Neutral impurity source turned on

* Impurities are injected as a volumetric source into
the region outside the separatrix. They penetrate
into the plasma region by diffusion and any radial
flows generated during the simulation.

» Cases presented are Ne MGI using only the upper
(MEDUSA) SPI valve on DIII-D

1.0 15 2.0
R (m) . .
 As Ne mixes into the

plasma, ionization,
recombination and radiation
cooling is calculated
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2) lonized Ne spreads helically along field lines

x 10°°
: « Spreading is driven by
135 195° 5 5 parallel pressure

gradient—large y,
equilibrates T. Pressure

12 gradient roughly density
gradient.

1.5

« Spreading is asymmetric,
strongly preferring
propagation toward the
HFS poloidally->
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2) lonized Ne spreads helically along field lines

Nozzle equation explains preferential HFS spreading:

Continuity oAU = constant
dr N dU dB _
r U B

vomentum  pUdU =—dp =—(dp/dp)dp =-CZdp

BA = constant = 0

du — 1 dB Flow starts at M<1, is thwarted where
U 1-M 2) B dB/B<0, accelerates where dB/B>0
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3) MHD modes grow and saturate - core thermal quench

m=1/n=1 mode primarily
responsible for core TQ, dumps
. core heat to the radiating edge
7 an T asymmetrically by convection,
not conduction
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3) MHD modes grow and saturate 2> core thermal quench

Absent plasma rotation, 1/1 mode dumps core
heat directly away from gas injection
location—> counterintuitive result that radiation
is peaked 180° away from gas jet
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2. DIII-D observations regarding the role of toroidal rotation in MGl
experiments
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DIlI-D experiments: Initial n=1 phase corresponds to

NIMROD prediction, then phase rotates
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Phase of n=1 mode when it first

] appears (prior to the TQ) is 180
1 degrees from gas jet location, in
| agreement with NIMROD prediction
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and TQ, n=1 phase rotates.
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DIlI-D experiments: n=1 phase at TQ can be controlled

with error fields (particularly at low rotation)

Use of error fields to control final phase of mode S 1 | (a) 90%:1<2007ms
is useful to measure radiation toroidal peaking -E;
factor with limited diagnostic set. Same TPF =
found at 90 and 210 degrees suggests impurity E %
distribution not a large factor in TPF (uniform?) = “
;:
0
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3. Results from NIMROD simulations with rotation

—> Evolution of the rotation profile
-> Effect on impurity spreading

-> Effect on radiation peaking
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Sharp drop in core rotation, slight uptick in edge
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Impurity spreading follows rotation direction

(reverse of stationary case)
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Rotating structure appears beginning at jet location, TQ
flash is ~180° from structure phase at TQ time
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MHD activity is more complicated in the rotating case
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Field lines show fully stochastic fields at time of TQ- later

for rotating case
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Some preliminary conclusions on the effects of rotation

 Direction of impurity spreading reverses to align with rotation direction,
and impurities spread more quickly overall

« Core rotation drops rapidly before significant impurities reach the core.

« Thermal quench onset is somewhat delayed, and TQ shorter in
duration. Well defined spike in radiated power more consistent with
measurements.

 Evolution of P4 seems consistent with DIlI-D magnetics analysis:
mode is born aligned with gas jet and rotates, determining toroidal
location of P4, maximum

DI~ UCSan Diego

SSSSSSS



Some questions and future work

« Why does radiation pattern begin rotating at 1.5 ms?
* How does interaction of various modes effect the rotation profile?
« What is the role of the higher-n modes in the rotating case?

Future work:
- Do detailed magnetics analysis to separate m/n components

- Examine effects of viscosity in rotating simulation with no MGl
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Significant effect of higher n modes in the core
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