

Supported by

Experimental Plans and Modeling Needs for Disruption Mitigation Studies on NSTX-U

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

R. Raman¹, S.P Gerhardt², D. Mueller², L. Baylor³, N. Eidietis⁴, R. Granetz⁵, V. Izzo⁶, S.C. Jardin², J.E. Menard², D. Stotler²

> ¹University of Washington, Seattle ²Princeton Plasma Physics Laboratory ³Oak Ridge National Laboratory ⁴General Atomics ⁵Massachusetts Institute of Technology ⁶University of California, San Diego

This work is supported by US DOE contract numbers FG03-96ER5436, DE-FG02-99ER54519 and DE-AC02-09CH11466

IEA Workshop: Theory and Simulation of Disruptions 13-15 July 2015 PPPL, Princeton, NJ

Culham Sci Ctr **U St. Andrews** York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kvushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep U Quebec

- Experimental Plans on NSTX-U for the 2016 JRT
 - Disruption Detection and Causes
 - MGI Research
- Modeling Needs to Support Disruption Mitigation Research on NSTX-U

Activities in the Area of Detection Previous Work

- Analysis of NSTX data yielded a "gray box" algorithm for disruption detection.
- Use tests on single signals, or combinations of signals, to assign "penalty points" when a threshold was exceeded.
- When the sum of the penalty points exceeded an "Aggregate Point Threshold" (APT), then a disruption warning was declared.

NSTX-U

Activities in the Area of Detection FY-16 Work

- NSTX-U PAM working group will focus on these topics.
 - Intends to develop a database of not only disruptions, but also disruption causes.
 - Look for prominent disruption causes due to plasma physics, facility limitations, or even human factors.
 - Will work to determine unique pre-cursors, for instance, from RFA detection and/or the RWM state space controller.
- MIT collaboration with help in these areas.
 - Will help with setting up the database, as well as testing the previously developed detection algorithms on NSTX-U data.
- Intend to make a "soft shutdown" capability in the NSTX-U PCS.
 - Will likely initially trigger on simple things like the $\rm I_{\rm P}$ error or the LM amplitude.
 - And will trigger inductive shutdown in the first year.
 - Will grow to include more sophisticated triggering algorithms, as those are developed.
 - And can be coupled to closed-loop trigger MGI in later years.

FY16 Experiments will Enable MGI capability and support the FY16 JRT

NSTX-U MGI experiments will be able to do direct comparison of:

- 1) Location 1a or 1b with 2
- 2) Location 2 with short and long connection length pipes
- 3) Location 3 with 2 (future)
- 4) Location 4 [TER Upper-Port-Plug 'like'] (future)

Key-Features:

- Identical valve at each location
- Same pipe conductance for poloidal comparison
- ITER MGI valve type (double flyer plate design)

NSTX-U MGI Valve based on TEXTOR and ORNL designs

Earlier NSTX-U MGI valve design based on TEXTOR / JET MGI concept (G. Czymek, SOFT 2014)

New double solenoid MGI design – V3 (zero net J x B torque) based on ORNL ITER MGI concept

ORNL Prototype ITER MGI Valve

M. Lyttle, SOFE 2015

🔘 NSTX-U

Raman TSD 14 July 2015

General Considerations for this First MGI XP on NSTX-U

- 200 Torr.L of Ne will be used for all experiments (based on FY2013 and 2014 DIII-D experience)
 - Will conduct a scan from 50 to 400 Torr.L to establish Ne injection amounts
- Will conduct experiments after the vessel Li levels are low in NSTX-U
- Will rely on long HeGDC to restore operating conditions
 - Will consider using Li if HeGDC inadequate to restore wall conditions
- Will use NBI heated L-mode discharge (~700 kA) with PFR (private flux region) over injection port

- Will use H-mode plasmas if possible

 Will conduct a limited set of experiments using a high-current 1 MA H-mode discharge

JRT2016: Asses Benefits of Injection into the Private Flux Region vs. LFS Mid-plane

- 1. Establish vessel halo currents and divertor heat loading from a reference unstable VDE discharge (PFR over MGI 1a)
- Inject from Location 2 into stable reference discharge (Config. 1a)
 Vary gas load from 50 to 400 Torr.L Ne
- 3. Use MGI to inject from Locations 1a and 2 into a stable reference DN or LSN (H-mode or L-Mode) discharge
 - Use a single gas load (~200 Torr.L)
- 4. Use MGI to inject from Locations 1a and 2 into an unstable VDE reference discharge
 - Vary MGI injection time at ~200 Torr.L
- 5. Repeat (2) using Pipe Configuration 3
- 6. Repeat (5) using 1MA discharge & in Config. 1a)

NOTE: #4 to #6 is based on available Run Time & time required to enable MGI capability on NSTX-U

- Compare the following parameters for the three cases:
 - Duration of pre-TQ and TQ
 - Power radiated and profile during pre-TQ and TQ
 - Divertor heat loading
 - Divertor halo currents
 - Gas assimilated by the discharge
- Case 1: PFR vs. Mid-plane injection (PFR injection, Midplane injection, and Un-mitigated VDE)
- Case 2: Mid-plane with Short and Long connection tubes
- Case 3: High-power and Low-Power discharges with short and long connection tubes in the mid-plane tubes

- DINA and ASTRA simulations with ZIMPUR code for impurity neutral transport
 - Model tested with JET discharges
- Pre-TQ determines assimilated impurity amount
 - Duration almost independent of D₂ influx and primarily depended on radiating impurity
 - Closer valve location or higher plenum pressure primarily shortens
 Pre-TQ phase
 - However, impurity assimilated during Pre-TQ must be sufficient for re-radiating >90% thermal energy during TQ
- For fast response, desirable to place valve inside port plug
 - Advantageous to have D_2 in the gas mix

* IAEA FEC 2014 THP3-35 & **THP3-31

Modeling Needs for MGI Impurity Penetration

- Because of the much larger size and significantly more energetic conditions of the ITER plasma edge, <u>reliable</u> <u>simulations are the only way</u> to know if a critical fraction of impurities can be assimilated by the ITER discharge, and on an acceptable time-scale.
- DIII-D & NSTX-U can have nearly identical poloidal crosssection, but with very different aspect ratios, so may be good test beds for the modeling effort

Then also validate on other machines including JET

- Begin with simple 1 or 2D models (TSC based ?) to calculate impurity penetration fractions
 - Then extend to 3-D
 - Provide realistic impurity assimilation results as input to NIMROD for impurity mixing and radiated power studies

Other DM Concepts

- ITER DM system is based on MGI & SPI
- Advanced concepts that deposit impurities in the core, are also being developed
 - Shell Pellet (DIII-D)
 - Electromagnetic
 Particle Injector
 Concept (NSTX-U)

Modeling Needs for Solid Particle Penetration

- Shattered Pellet: Penetration and ablation of frozen Ne and Ar pellets of different size, shape, and velocity, in a range of plasma conditions
 - Can rely to some extent on database from pellet injection work
- Shell Pellet and EPI: Penetration and ablation of B, BN, Be composed of small spheres
- Electron temperature and density variations from NSTX-like to ITER-like in:
 - SOL conditions
 - H-mode pedestal conditions
 - L-mode edge conditions

- NSTX-U MGI research will improve the knowledge base by studying the importance of the poloidal gas injection location, especially from the private flux region
- Will begin to develop and test disruption prediction and avoidance algorithms
- PPPL theory group has the potential to make important contributions to developing capability for reliable gas and solid particle penetration and assimilation in hightemperature plasma

Backup Slides

Integration of Diagnostics and Resulting data

Thomson scattering, EFIT Physics of gas penetration (fraction that penetrates separatrix) H-alpha array, Spectroscopic detectors System response time (gas trigger time to first detection of injected gas interacting with the plasma edge) Multi-color Soft X-ray, H-alpha, Ip, EFIT, Thomson scattering, Mirnov coils Delay in current quench after the gas contacts plasma edge Rate of current quench and vertical dynamics of the plasma 3-D MHD response to the whole equilibrium and MHD activity Thermal quench evolution & pedestal collapse Bolometer array- Core radiated power dynamics Halo current sensors- Dependence on halo current amplitude on gas assimilation (Mitigated vs. a VDE disruption) Two color divertor fast infrared camera and Eroding thermocouples Spatial distribution of Thermal loads & fast heat flux measurements

