AVALANCHE GROWTH OF THE SECONDARY RUNAWAY ELECTRON GENERATION

Chang Liu, Dylan Brennan, Amitava Bhattacharjee

Princeton University, PPPL

Allen Boozer

Columbia University

July 14th 2015 Theory and Simulation of Disruptions Workshop

Motivation

- In recent dedicated runaway electron experiments on DIII-D with gas puffing during flat-top, a turning point of the runaway electron HXR signal was observed.
- Critical electric field found to be several times larger than Connor-Hastie $E_{\rm c}$.

• Mysterious energy loss mechanisms?

R.S. Granetz et al., Phys. Plasmas 21, 072506 (2014).C. Paz-Soldan et al., Physics of Plasmas 21, 022514 (2014).

Caveats of Rosenbluth-Putvinski

- Rosenbluth-Putvinski's theory predicts E_c (Connor-Hastie critical field) is threshold of secondary generation, and avalanche growth rate (almost) proportional to E/E_c -1.
- Issues with the theory
 - Calculation of secondary generation is based on simplified source term that ignores energy and pitch angle distribution of seed electrons.

$$S = \frac{n_r}{4\pi \ln \Lambda} \delta(\xi - \xi_2) \frac{1}{p^2} \frac{\partial}{\partial p} \left(\frac{1}{1 - \sqrt{1 + p^2}} \right) \qquad \qquad \xi_2 = \frac{\sqrt{1 + p^2} - 1}{p}$$

- Radiation effects (synchrotron, bremsstrahlung) ignored in kinetic model.
- Other kinetic effects (whistler wave, magnetic fluctuation) are also missing.

- Kinetic model of runaway electrons
 - Synchrotron radiation reaction force
 - Deriving source term for secondary RE generation
- Calculate runaway probability function
 - PDE solving method
 - Critical electric field for growth
- Avalanche growth simulation
 - Growth rate calculation
 - Simulation of gas-puffing case
- Conclusions

Kinetic model of runaway electrons

- Synchrotron radiation reaction force
- Deriving source term for secondary RE generation
- Calculate runaway probability function
 - PDE solving method
 - Critical electric field for growth
- Avalanche growth simulation
 - Growth rate calculation
 - Simulation of gas-puffing case
- Conclusions

Kinetic model of runaway electrons

• Collisions, radiation effects, and secondary RE generation included in the kinetic equation.

$$\frac{\partial f}{\partial t} + E\{f\} + C\{f\} + R\{f\} = S$$

- E: Parallel electric field drive
- C: Collision operator
- R: Synchrotron radiation reaction force
- S: Source term for secondary RE generation
- Collision operator gives correct limits for thermal electrons and relativistic electrons.
- Numerical scheme similar to code CODE.
 - M. Landreman, A. Stahl, and T. Fülöp, Comp. Phys. Comm. 185, 847 (2014).

Synchrotron radiation reaction force

• Synchrotron radiation force is important for high energy electrons (comparable to *E* field and collisional drag)

$$\mathbf{F}_{s} = \frac{2}{3} r_{e} m_{e} c^{2} \beta^{2} \gamma \left\{ \frac{\sin^{2} \theta}{r_{g}^{2}} \left[(1 + p_{\perp}^{2}) \mathbf{p}_{\perp} + p_{\perp}^{2} p_{\parallel} \hat{b} \right] + \frac{\beta \gamma^{3}}{R_{0}^{2}} \hat{b} \right\}$$

 $R\{f\} = \nabla \cdot \left(\mathbf{F}_{S} f\right)$

- For electrons with γ <100 (most), contribution from the magnetic field curvature is negligible compared to Larmor motion ($r_{\rm g} \ll R_0$).
 - B. Bernstein and D. C. Baxter, Phys. Fluids 24, 108 1981.
 - A. Stahl, M. Landreman, G. Papp, E. Hollmann, and T. Fülöp, Phys. Plasmas 20, 093302 (2013).

Deriving source term for secondary generation

- We use Møller scattering cross section to get large angle collision scattering probability for relativistic electrons.
- Scattering angle derived from energy and momentum conservation.

$$\cos\theta_{\delta} = \sqrt{\frac{\gamma_e + 1}{\gamma_e - 1}\frac{\gamma - 1}{\gamma + 1}}.$$

• Source term is integrated from scattering probability and electron distribution function

$$S[f] = \frac{1}{2\pi p^2} \int 2\pi p_e^2 dp_e d\xi_e \hat{S}(p,\xi;p_e,\xi_e) f(p_e,\xi_e).$$

C. Møller, Ann. Phys. (Berlin), 406, 531 (1932) A.H. Boozer, Phys. Plasmas **22**, 032504 (2015).

- Kinetic model of runaway electrons
 - Synchrotron radiation reaction force
 - Deriving source term for secondary RE generation
- Calculate runaway probability function
 - PDE solving method
 - Critical electric field for growth
- Avalanche growth simulation
 - Growth rate calculation
 - Simulation of gas-puffing case
- Conclusions

Calculate runaway probability function

- When $E/E_c>1$, the electron phase space is separated into the runaway region (electron will run away) and lost region (electron will fall back to the thermal population).
- Two methods to study this phase space structure
 - Test particle method truncate the kinetic equation to make it deterministic, and locate the singular point in phase space.

$$\frac{1}{2}\frac{\partial}{\partial\xi}(1-\xi^2)\frac{\partial f}{\partial\xi} = \frac{\partial}{\partial\xi}(\xi f) + \frac{\partial^2}{\partial\xi^2}\left(\frac{1-\xi^2}{2}f\right)$$

• Monte-Carlo simulation – Random sampling to obtain runaway probability

• We develop a new method to get runaway probability by solving PDE.

J.R. Martín-Solís, J.D. Alvarez, R. Sánchez, and B. Esposito, Phys. Plasmas **5**, 2370 (1998). I. Fernández-Gómez, J.R. Martín-Solís, and R. Sánchez, Phys. Plasmas **19**, 102504 (2012).

PDE solving method

• Introduce function *P* representing the runaway probability

P = 1 at high energy boundary

P = 0 at low energy boundary

• *P* is found as a solution to a PDE derived from the kinetic equation. Derivation is similar to first passage problem.

$$\frac{\partial f}{\partial t} = -\frac{\partial}{\partial x} \left[v(x)f \right] + \frac{\partial^2}{\partial x^2} \left[D(x)f \right]$$
$$v(x)\frac{dP(x)}{dx} + D(x)\frac{d^2P(x)}{dx^2} = 0$$

Adjoint equation of Fokker-Planck equation

Results of runaway probability function

- New method gives smooth probability function rather than separatrix.
- Overcomes caveats of test particle method (truncation & coordinates dependence).
- Agrees well with Monte-Carlo simulation. (Efficiency is better.)

Critical electric field for growth

- In presence of synchrotron radiation force, if *E* is below a threshold E_r , transition solution is missing, with only a (almost) uniform solution left.
- $E_{\rm r}$ is the critical electric field for runaway electron growth.

P. Aleynikov and B.N. Breizman, Phys. Rev. Lett. 114, 155001 (2015).

- Kinetic model of runaway electrons
 - Synchrotron radiation reaction force
 - Deriving source term for secondary RE generation
- Calculate runaway probability function
 - PDE solving method
 - Critical electric field for growth
- Avalanche growth simulation
 - Growth rate calculation
 - Simulation of gas-puffing case
- Conclusions

Simulation Result – Avalanche growth

• Time-dependent kinetic equation solved using backward Euler.

• With strong radiation, distribution function is non-monotonic.

Avalanche growth rate

• With synchrotron radiation force added, a new threshold $E_r > E_c$ is observed, below which there is no avalanche growth.

Simulation of gas-puffing case

- Three effects after gas puffing: Dreicer loss (loss of low energy electrons), Radiation loss (loss of high energy electrons) and secondary generation.
- HXR signal turning point reflects redistribution of RE energy
- Qualitative agreement with experiment observed. Other loss mechanism not necessary

- Kinetic model of runaway electrons
 - Synchrotron radiation reaction force
 - Deriving source term for secondary RE generation
- Calculate runaway probability function
 - PDE solving method
 - Critical electric field for growth
- Avalanche growth simulation
 - Growth rate calculation
 - Simulation of gas-puffing case
- Conclusions

Conclusions

- A PDE solving method is developed to calculated the runaway probability function.
- The method can also identify the critical electric field for runaway electron growth.
- In presence of synchrotron radiation reaction and the pitch angle scattering, the threshold electric field for avalanche growth increases from E_c to E_r , which depends on *B* and *Z*.
- Simulation of gas-puffing experiment shows qualitatively agreement with the experimental result.
 - Synchrotron radiation
 - Pitch angle scattering Z_{eff}
 - Redistribution of the runaway electron energy

Thank you!

$$\tau = \frac{4\pi\epsilon_0^2 m_e^2 c^3}{e^4 n_e \ln\Lambda}$$

$$\tau_r = \frac{6\pi\epsilon_0 m_e^3 c^3}{e^4 B^2}$$

$$\int f(x,t)P(x)dx = \text{const}$$

$$0 = \int \frac{\partial f}{\partial t} P(x)dx$$

$$= \int \left\{ -\frac{\partial}{\partial x} [v(x)f] + \frac{\partial^2}{\partial x^2} [D(x)f] \right\} P(x)dx$$

$$= \int \left\{ v(x)\frac{dP(x)}{dx} + D(x)\frac{d^2P(x)}{dx^2} \right\} f(x,t)dx + \text{Surface term}$$

$$v(x)\frac{dP(x)}{dx} + D(x)\frac{d^2P(x)}{dx^2} = 0$$

Theoretical estimation of the growth rate

• If a distribution function is given, the growth rate can be calculated using the runaway probability function.

$$\gamma = \frac{1}{n_{re}} \int S(p,\xi) Q(p,\xi) 2\pi p^2 d\xi dp$$

• If a growth rate is given, an approximate distribution can be obtained from the kinetic equation.

$$\Gamma(\underset{\partial f}{p \rightarrow f} + E\{f\} + C\{f\} + R\{f\} = S\{f\} = 0$$

• The solution is thus the stationary point.

Next steps

- Study other loss mechanisms, including the bremsstrahlung radiation loss, the magnetic field fluctuation and the whistler wave scattering.
- Study the RE generation and decay for sudden cooling of plasma.
 Future work
- Couple the kinetic simulation to MHD code.
- Collaborate on the future DIII-D experiments to study the critical electric field for runaway electron growth and the runaway electron energy distribution.
- Develop more complicated synthetic diagnostics simulations and compare the results with the experiments.