Role of Integrated Simulations in Disruption Physics Research

- P. T. Bonoli (MIT)
- C. Sovinec (U. of Wisconsin)
- **B. Breizman (UT-Austin)**
- N. Ferraro (GA)
- G.-Y. Fu (PPPL)
- E. Hollman (UCSD)
- S. Jardin (PPPL)
- H. Strauss (HRS Fusion)
- **R. Samtaney (KAIST)**

- Lois Curfman McInnes (ANL)
- **D. Brennan (Princeton U.)**
- L. Chacon (LANL)
- **R. Fitzpatrick (UT-Austin)**
- S. Gerhardt (PPPL)
- V. Izzo (UCSD)
- S. Kruger (Tech-X)
- A. Turnbull (GA)

Princeton Plasma Physics Laboratory July 13-15, 2015

Outline

- This is actually a summary of the DOE Workshop and Report on Integrated Simulations in Magnetic Fusion Energy Sciences as it pertains to disruptions.
- Review Background and Process
 - DoE charge letter, panel structure
 - Call for whitepapers, community teleconference, writing workshop
 - Goals of the workshop
- Review of Recent Progress
- Gaps and Opportunities
 - Physics / Applied mathematics / Computer Science
- Strategy and Path Forward:
 - Priority Research Directions

Background

- Integrated Simulation Workshop is one of the four FES Community Planning Workshops conducted in 2015:
 - https://www.burningplasma.org/activities/?article=Integrated %20Simulations
 - DOE Points of Contact:
 - John Mandrekas (FES)
 - Randall Laviolette (ASCR)
- Workshops were held on Transients and Plasma-Material-Interactions, with Plasma Science Frontiers Workshops to be held in (August & October, 2015):
 - https://www.burningplasma.org/activities/?article=FES%20C ommunity%20Planning%20Workshops%202015

Charge from DOE

- "Review recent progress and identify gaps and challenges in fusion theory and computation directly relevant to the topic of *disruption prevention, avoidance, and mitigation* and that of plasma boundary physics, with whole device modeling as the long-term goal."
- **"Reassess these opportunities and adjust or broaden them appropriately**, taking into consideration recent progress and using the criteria of
 - Urgency
 - Leadership computing benefit
 - Readiness for progress within a ten-year time frame
 - World-leading potential

Goals of this Workshop

- Identify theory/simulation advances since RENEW (2009) and more recently the 2011 FSP Execution Plan.
- Identify gaps in theory/simulation, especially related to integration of multiple processes and regions:
 - How could these gaps be addressed in the shorter (5 year) and longer (10 year) timeframes ?
 - Identify new opportunities for integrated simulation including the roles of physics, applied mathematics, and computer science
 - Emphasize crosscutting fusion / applied math / computer science connections
 - Identify potential applications for extreme-scale computing

Integrated Simulation for Magnetic Fusion Energy Sciences

Integrated Science Applications

Integrated Science Applications

A. Disruption Physics (prevention, avoidance, characterization, and mitigation)

Chair: Carl Sovinec (UW)

Co-chair: Dylan Brennan (Princeton)

Focus: gaps and challenges in theory, guidance from experiment, status of simulation capabilities, status of validation and measurement capabilities

B. Boundary Physics (pedestal, scrape off layer, and PMI)

Chair: Tom Rognlien (LLNL)

Co-chair: Phil Snyder (GA)

Focus: gaps and challenges in theory, guidance from experiment, status of simulation capabilities, status of validation and measurement capabilities

C. Whole Device Modeling

Chair: Jeff Candy (GA)

Co-chair: Chuck Kessel (PPPL)

Focus: software, status of integrated modeling, validation and measurement capabilities, the roles of first-principles models (e.g., requiring extreme-scale computing platforms) and reduced models

Common focus for all panels: Looking for new opportunities for integrated simulation.

Interaction with Mathematical and Computational Enabling Technologies

Magnetic Fusion Energy Integrated Science Applications (ISAs) drive

Mathematical and Computational Enabling Technologies

D: Multiphysics and Multiscale Coupling	F: Data Management, Analysis, and
 Chair: Jeff Hittinger (LLNL) Co-chair: Luis Chacon (LANL) Focus: mathematical formulations (e.g., models, meshing, discretization), algorithms (e.g., solvers and time advancement, coupling between scales and domains), quantitative a posteriori error analysis, verification 	 Assimilation Chair: Wes Bethel (LBNL) Co-chair: Martin Greenwald (MIT) Focus: integrated data analysis & assimilation that support end to end scientific workflows; knowledge discovery methods in multimodal, high-dimensional data; integrating data management and knowledge discovery software architectures and systems
E: Beyond Interpretive Simulations Chair: Donald Estep (Colorado State Univ) Co-chair: Todd Munson (ANL) Focus: stochastic inverse problems for parameter determination, sensitivity analysis, uncertainty quantification, optimization, design, control.	G: Software Integration and Performance Chair: David Bernholdt (ORNL) Co-chair: Bob Lucas (USC/ISI) Focus: workflows and code coupling software, performance portability, software productivity and software engineering, governance models for the fusion integrated modeling community

Process Thus Far

- Community wide call for whitepapers ending on April 24, 2015:
 - Panels received 121 whitepapers
- Community Teleconference, May 18–19, 2015:
 - Oral presentations from 45 whitepaper submissions.
 - Discussions of whitepapers by panels.
- Teleconferences among panel chairs / co-chairs and individual panels:
 - About 35 teleconferences thus far (March, 2015 present).
- "Writing" workshop held June 2-4, 2015:
 - Attended by panel members and "participants at large".
- Workshop report is now being finalized.

Disruption Panel (A): Process

- Panel members were selected to balance experimental, theoretical, computational, and applied mathematics perspectives.
- The panel held conference calls and exchanged information through e-mail, web postings, and the video conference.
- 11 whitepapers were invited to ensure coverage of critical topics.
- The community submitted a total of 28 whitepapers that listed disruption simulation as primary or secondary area.
 - Topics include avoidance, characterization, mitigation, kinetic stability, runaway electron physics, halo currents, external structures, fast linear computation, reduced models, multi-scale modeling, data analytics, and validation.

Workshop Process for Identifying Compelling FES-ASCR Research Directions

Day 3

Emphasis:

- Role of integrated simulations
- Potential for extreme-scale computing

Fusion physics panels: A,B,C ASCR math/CS panels: D,E,F,G

Today's Approach: Scale Separation

Post, J. Fusion Energy, 2005

multiscale

Approach

- Two distinct categories of numerical computation are needed:
 - Assess macroscopic stability for avoidance.
 - Understand and characterize disruptive transients.
- "Avoidance" is used to mean both the routine maintenance of the discharge trajectory and last-minute redirection of the discharge if disruption becomes likely.
- Disruptive evolution involves nonlinear macroscopic dynamics, relativistic and non-relativistic particle kinetics, electromagnetic responses of external structures, radiation, neutral dynamics, and plasma-surface interaction.

Recent Progress in Disruption Modeling - Highlights

- The understanding of externally imposed non-axisymmetric perturbations has improved through validation and benchmarking campaigns.
- Synchrotron radiation and scattering effects on the runaway-electron threshold voltage have been analyzed theoretically.
- Drift and energetic-ion effects are now considered in linear stability computations and in nonlinear simulation.
- Progress on modeling vertical displacement events including:
 - 2D simulation benchmarking
 - Asymmetric wall-force predictions for ITER
 - Development of reduced modeling and detailed external electromagnetics.
- Majority-species drift kinetics for macroscopic dynamics have progressed analytically and computationally.
- Modeling and validation of mitigation through massive gas injection (MGI) reveal causes of toroidal localization.

Recent progress in simulating disruptive transients

• Nonlinear MHD simulation of global instability leading to thermal quench and localized heat deposition on the surrounding wall (S. Kruger).

Recent progress in simulating disruption mitigation

- Nonlinear 3D MHD simulation combined with radiation modeling of mitigation via massive gas injection (MGI) in DIII-D (V. Izzo).
- Simulation shows concentration of edgeinjected Ne impurity after dynamic mixing

The challenge: JET data base indicates a number of root causes of disruptions in JET

• Root causes of disruptions include:

Inadequate operations planning.

Failure of feedback control or other systems.

Natural fluctuations that exceed the nonlinear meta-stability of a confinement state.

P. C. deVries, M. F. Johnson, B. Alper, et al., Nucl. Fusion 51, 053018 (2011).

Challenges and Opportunities - Physics

Avoidance and onset

- The predictive capability of linear stability computation needs validation.
- Locking of resonant magnetic perturbations is a common, yet poorly understood, precursor to disruption.
- Stability at low rotation is less robust than the best numerical predictions.

• Thermal quench

- The primary channel of electron energy transport is not known.
- Plasma-surface interaction likely affects the dynamics of disrupting discharges.

• Current quench

- Electrical current paths depend on the geometric details of external conductors.
- The experimentally observed electric field for runaway electron generation has not been explained.
- The interaction of relativistic particles with matter is of broad scientific interest.

Mitigation

- The penetration capability of shattered-pellets is not known.
- The significance of rotation and neutral dynamics needs to be studied.

Challenges and Opportunities - Computation

• Multiple scales

- Distortions are device-scale; resonant layer thickness is 100 1000 times smaller.
- Equilibration is fast relative to island development, wall time, and quench times.
- Modeling kinetic effects increases the dimensionality of the system.

• Multi-physics effects

- Present-day 3D simulations use implicit single- and two-fluid modeling with limited external electromagnetics, radiation, and fast-ion kinetics.
- Comprehensive characterization needs plasma-surface interaction, neutral dynamics, majority-species and runaway-electron kinetics.

• Data analysis

- Linear stability analysis and initial conditions for nonlinear simulations are based on profiles fitted to experimental discharges.
- Incorporating "kinetic" data and adjusting for quality need to be automated.
- Stability is sensitive to profiles, and uncertainties have not been quantified.

Challenges – Computation (continued)

Code integration

- Radiation and external electromagnetics software have been coupled for mitigation and wall-force studies.
- Coupling RF propagation and deposition has been demonstrated and required significant development.
- Plasma-surface interaction, neutral dynamics, and more detailed external electromagnetics are needed.

Plasma control

- Fast linear stability computation for real-time control may be feasible.
- Accurate and fast profile fitting would be the most challenging aspect.

Crosscutting Issues Identified for ASCR

Validation

- Databases have not been systematically analyzed for linear stability.
- Nonlinear modeling without reduced modeling is computationally expensive.

Multi-scale computation

- Advances in time-integration can facilitate studies of characterization and mitigation.
- Computational performance depends on algebraic solvers.
- Implicit computation on new architectures
 - Implicit computation provides as much as 4 orders of magnitude performance improvement over explicit computation.
 - Wave-propagation physics leads to mathematical stiffness and ill-conditioned algebraic systems.
- Data analysis
 - Profile reconstruction uses a number of input channels.
- Software integration
 - New combinations for multi-physics computation are expected.

HPC has enabled significant advances in Extended MHD

Prediction of global dynamics of tokamak plasmas

CEMM (S. Jardin, PPPL)

Recommendations and Path Forward "Priority Research Directions"

- Develop integrated simulation that models all forms of tokamak disruption from instability through thermal and current quenches to the final deposition of energy with and without mitigation.
 - Modeling capable of addressing fundamental questions on mode locking, runawayelectron generation and evolution, and open-field currents.
 - Integrated modeling will facilitate the engineering of effective mitigation systems.
- Develop a profile-analysis system that automates reconstruction and coordinates transport modeling and stability assessment for disruption studies.
 - Automated profile analysis will benefit all forms of disruption modeling.
 - Automation is a necessary step for real-time analysis.
- Verify and validate linear and nonlinear computational models to establish confidence in the prediction and understanding of tokamak disruption physics with and without mitigation..
 - Validation methodology will help judge what effects are most important.
 - Prospect for predictability need to be addressed.