Multi-machine analysis of non-axisymmetric and rotating halo currents

Clayton E. Myers¹

S. P. Gerhardt,¹ N. W. Eidietis,² G. Pautasso,³ R. S. Granetz,⁴ and the ITPA Working Group on Non-Axisymmetric Halo Currents

¹ Princeton Plasma Physics Laboratory (NSTX)

² General Atomics (DIII-D)

³ Max-Planck-Institut für Plasmaphysik (ASDEX Upgrade)

⁴ Massachusetts Institute of Technology (Alcator C-Mod)

Theory & Simulation of Disruptions Workshop Princeton, NJ July 13–15, 2015

Presentation Outline

- Goal: Study halo current non-axisymmetry and rotation across many machines → use a common analytical framework
- Working to build a halo current database filled with "data units" from various machines (NSTX, DIII-D, AUG, C-Mod, etc.)
- Progress report:
 - Status of the ITPA halo current database
 - Analysis framework and representative examples
 - Preliminary statistical analysis
 - Future plans

Asymmetry and rotation observed in many machines

- Halo currents often exhibit non-axisymmetric structure → n=0 with an n=1 "lobe"
- Full or partial rotation of the *n*=1 lobe observed in NSTX, AUG, and C-Mod
- How do non-axisymmetry and rotation vary with machine, discharge parameters?
- What common physics drives the observed non-axisymmetry and rotation?

G. Pautasso, Nucl. Fusion, 2011, Fig. 15 2π toroidal angle π -10 kA # 24581

Status of the ITPA halo current database

- One "data unit" per shot (or per toroidal array per shot):
 - Equilibrium data (I_P, B_T, κ , Z_P, W_{MHD}, MGI, ...)
 - Halo current data as a function of toroidal angle
 - At least four toroidal locations per sensor array
- Present contents of the database:
 - Recent NSTX shunt tile data: ~150+ shots × 2 poloidal locations
 - Recent AUG shunt tile data: ~4 shots × 2 poloidal locations
 - DIII-D TAC shunt tile data: ~60 shots × 5 poloidal locations
 - C-Mod partial rogowski data: ~1300 shots × 1 poloidal location
- Now carry out the analysis outlined in the ITPA WG specification

Various halo current sensor arrays

Clayton E. Myers – Theory and Simulation of Disruptions Workshop – Princeton, NJ – July 13, 2015

Representative halo current analysis (NSTX)

• Fit *n*=0,1 profile to each toroidal array at each time point:

 $I_h(\phi) = h_0 + h_1 \sin(\phi - h_2)$

- Amplitude of each component tracked by h₀, h₁
- The n=1 phase is tracked by h₂
- Total rotation calculated by integrating h_2 in time
- Rotation is only "counted" when the *n*=1 contribution is at least 1% (or 2.5%) of the peak RMS halo current value

Representative halo current analysis (NSTX)

$$\mathsf{RMS}\{I_h\}^2 = \frac{1}{N_\phi} \sum_i I_h^2(\phi_i)$$
$$= h_0^2 + \frac{1}{2}h_1^2 + \mathsf{Residual}$$

$$n=1 \text{ fraction} \equiv \frac{h_1^2/2}{\text{RMS}\{I_h\}^2}$$

Interval 8: 25-10% Interval 7: 50-25% 75-50% Interval 6: 100-75% Interval 5: Interval 4: 75–100% 50-75% Interval 3: Interval 2: 25-50% 10-25% Interval 1:

 $\mathsf{RMS}\{I_h\}$ $\overline{\max\{\mathsf{RMS}\{I_h\}\}}$

Representative halo current analysis (NSTX)

$$\mathsf{RMS}\{I_h\}^2 = \frac{1}{N_\phi} \sum_i I_h^2(\phi_i)$$
$$= h_0^2 + \frac{1}{2}h_1^2 + \mathsf{Residual}$$

$$n=1 \text{ fraction} \equiv \frac{h_1^2/2}{\text{RMS}\{I_h\}^2}$$

Rotation counted when:

$$\frac{h_1^2/2}{\max\left\{\mathsf{RMS}\left\{I_h\right\}^2\right\}} > \mathsf{Basis} \ \%$$

Representative DIII-D Example (I)

🕕 NSTX-U

Clayton E. Myers – Theory and Simulation of Disruptions Workshop – Princeton, NJ – July 13, 2015

Representative DIII-D Example (II)

🔘 NSTX-U

Clayton E. Myers – Theory and Simulation of Disruptions Workshop – Princeton, NJ – July 13, 2015

Representative AUG Example

Clayton E. Myers – Theory and Simulation of Disruptions Workshop – Princeton, NJ – July 13, 2015

C-Mod Example (first for this WG)

🕕 NSTX-U

Clayton E. Myers – Theory and Simulation of Disruptions Workshop – Princeton, NJ – July 13, 2015

C-Mod Example (first for this WG)

🕕 NSTX-U

Clayton E. Myers – Theory and Simulation of Disruptions Workshop – Princeton, NJ – July 13, 2015

Non-axisymmetry (n=1) vs. time interval

$$n=1 \text{ fraction} \equiv \frac{h_1^2/2}{\text{RMS}\{I_h\}^2}$$

- NSTX non-axisymmetric from the start, symmetrizes *after* the peak of the pulse
- DIII-D has high axisymmetry *during* the peak of the pulse
- DIII-D axisymmetry depends on the poloidal location!
- AUG is *least* symmetric at the peak of the pulse

Rotation (*n*=1) vs. time interval

- NSTX has highest rotation in this database
- NSTX rotation peaks near halo current maximum
- DIII-D rotates more before the maximum than after
- DIII-D has very little rotation outboard (P14) but more rotation inboard (P10)
- AUG has low rotation, but the temporal profile is similar to NSTX

Combined non-axisymmetry and rotation

- Summarize the previous two bar graphs in one scatter plot
- Average the n=1 fraction over intervals 4 and 5 (peak)
- Largely reflects the findings of the two previous bar graphs
- Note the strong inboard/outboard asymmetry in the two DIII-D poloidal arrays (P10/P14)

Future plans

- Analysis w.r.t. the equilibrium data:
 - Equilibrium data (I_P , B_T , κ , Z_P , W_{MHD} , MGI, ...)
 - Current quench times, edge safety factor, vertical position, etc.
- Fold in the new contributions:
 - Statistical analysis of the C-Mod data
 - More shots from AUG \rightarrow coming soon
 - Contributions from JET?
- Continue to work toward satisfying the ITPA WG specification doc:
 - "Windowed cosine power fits" rather than just simple n=0/n=1
 - Analyze locked vs. rotating cases independently
 - Comparison with proposed scaling laws