Resistive Wall Tearing Mode Locking

H. Strauss, *HRS Fusion* PPPL Disruption Theory Workshop 2015

RWTM Locking

- The most common type of disruption involves a saturated, rotating (2, 1) magnetic island, near the edge of the plasma.
- The rotation slows down and locks to the wall, and the plasma disrupts.
 - why does the rotating tearing mode saturate without disrupting?
 - why does the mode cause a disruption when locked?
 - what causes locking?
- resistive wall has an essential role
- will consider resistive wall tearing modes (RWTMs)

Outline

- Linear RWTM in asymmetric vertical displacement events (AVDEs)
- Nonlinear RWTM
 - effect of wall resistive penetration time au_{wall}
 - shear free rotation and effective au_{wall}
 - effect of sheared rotation
- sheared rotation and locking

Scrape Off of Flux by VDE

(2,1) modes near the plasma edge were studied in the context of AVDEs [H. Strauss, R. Paccagnella, J. Breslau, L. Sugiyama, S. Jardin, Sideways Wall Force Produced During Tokamak Disruptions, Nucl. Fusion **53**, 073018 (2013).]

(a) The poloidal magnetic flux ψ is shown when the initial separatrix contour reaches the wall during a VDE.

(b) q profiles corresponding the initial state and (a). The vertical lines are drawn at the last closed flux surface.

(a) linear growth rate γ vs. vertical displacement y_{axis} . As y_{axis} increases, $q \rightarrow 2$.

(b) For $q_a \gtrsim 2, \gamma \propto S^{-1/3}$. For large τ_{wall} the growth rate is independent of τ_{wall} , but for for smaller τ_{wall} , the growth rate decreases with τ_{wall} .

(b) pressure in a nonlinear evolution. The mode structure is predominantly (m, n) = (2, 1). The mode was not rotating before the disruption.

RWTM - effect of au_{wall} , no rotation, no VDE

Initial state was prepared by setting current and pressure zero for $\psi < \psi_a$, where $q(\psi_a) = q_a$, and $q_a \approx 2.1$ Nonlinear simulation were done, with $S = 10^6$, and τ_{wall}/τ_A (a)= 10⁶, (b) = 100. For case (a) F_x saturates at low amplitude. The wall is like an ideal wall. For case (b) F_x reaches a much larger value. The wall is like no - wall.

Wall force amplitude is an order larger for resistive wall.

RWTM - effect of au_{wall} , no rotation

(a) pressure,
$$t = 1243\tau_A$$
, $S = 10^6$, $S_w = 10^6 = \tau_w/\tau_A$
(b) pressure, $t = 1262\tau_A$, $S = 10^6$, $S_w = 100$,
(c) P(t): (a) pressure loss and (b) fast

TQ. (d) $\delta B/B$ at the wall for (a) and (b).

RWTM - effect of resistive wall on nonlinear stability

Assume nonlinear saturation related to Δ' , a measure of free energy

$$\Delta' = \frac{\psi'_+}{\psi} - \frac{\psi'_-}{\psi} \tag{1}$$

at rational (2, 1) surface r_s , with wall at $r_w > r_s$.

ideal wall: $\psi(r_w) = 0$.

$$\frac{\psi'_{+}}{\psi} = -\frac{2}{r_s} \frac{r_w^4 + r_s^4}{r_w^4 - r_s^4}$$
(2)

no wall: $\psi = r_s^2/r^2$,

$$\frac{\psi'_+}{\psi} = -\frac{2}{r_s} \tag{3}$$

 ψ_{-}^{\prime}/ψ is the same for both cases, and

$$\frac{r_w^4 + r_s^4}{r_w^4 - r_s^4} > 1 \tag{4}$$

for $r_s > 0$, so that Δ' is larger for no wall than for ideal wall.

RWTM - effect of shear free rotation

Shear free rotation was modeled by going to a toroidally rotating frame, in which the plasma was stationary and the wall rotated.

The simulations were done with $S = 10^6, S_{wall} = 100$, with

rotation frequencies: $\omega \tau_A =$ (a) 0, (b) 0.01 (c) 0.1

The slow rotation is like no rotation. Fast rotation is like ideal wall.

Simple theory shows that $\psi \approx 0$ on the wall if $\omega \tau_{wall} \gg 1$.

$$\frac{\partial \psi}{\partial t} = \frac{\eta_w}{\delta} (\psi'_{vac} - \psi'_{plas}) \tag{5}$$

$$\psi'_{vac} = -\frac{m}{r}\psi, \qquad \frac{\partial\psi}{\partial t} = (\gamma + i\omega)\psi, \qquad \tau_w = \frac{\delta r}{\eta_w}$$
 (6)

$$\psi = -\frac{r\psi'_{plas}}{m + (\gamma + i\omega)\tau_w} \qquad \psi \approx 0, \qquad |\gamma + i\omega|\tau_w \gg m \tag{7}$$

RWTM - effect of shear free rotation

simulations with $S = 10^6, S_w = \tau_w/\tau_A = 100$ (a) pressure, $t = 1915\tau_A, \omega = 0.1$. (b) pressure, $t = 1261\tau_A, \omega = 0.01$. (c) P(t) for (a): similar to $\omega = 0, S_w = 10^6$ and (b) like $\omega = 0, S_w = 100$. (d) $\delta B/B$ for cases (a) and (b).

(a) A sheared velocity was introduced, which was zero at the plasma edge, with $S = 10^6, S_w = 100$. From a nonlinear simulation.

(b) The peak velocity was $v_{\phi} = 0.1, 0.375, 0.5$. For the fastest rotation , the mode is suppressed. Sheared rotation can completely stabilize the mode.

RWTM - effect of sheared rotation

Self Locking

$$o\frac{dv_{\parallel}}{dt} = -\mathbf{b} \cdot \nabla p \tag{8}$$

$$\gamma p = -\frac{2}{3}p\mathbf{b}\cdot\nabla v_{\parallel}, \quad p = T\rho \quad \mathbf{b}\cdot\nabla T \approx 0$$
 (9)

$$\frac{d\overline{v}_{\parallel}}{dt} = \nabla \cdot \kappa_{eff} b_r^2 \nabla \overline{v}_{\parallel}, \qquad \kappa_{eff} = \frac{2p}{3\gamma\rho}$$
(10)

similarly,

$$\frac{d\overline{p}}{dt} = \frac{1}{r}\frac{d}{dr}r\kappa_{\parallel}b_{r}^{2}\frac{d\overline{p}}{dr}$$
(11)

$$\frac{d}{dt} \int v_{\parallel} dR dZ = \oint \left(\kappa_{eff} b_r^2 \frac{dv_{\parallel}}{dr} + \frac{v_A^2}{4\pi} \overline{b}_r b_{\theta}^2 \right) d\ell$$
(12)

Net loss of v_{\parallel} requires b_r non zero at the wall. Last term is drive requiring asymmetry in θ . [H. Strauss, L. Sugiyama, R. Paccagnella, J. Breslau, S. Jardin, Tokamak Toroidal Rotation caused by AVDEs and ELMs, Nuclear Fusion **54**, 043017 (2014)]. Ballooning could give asymmetry. Steady state possible.

Summary

- RWTMs occur in AVDEs
 - flux scrape off causes $q_a \rightarrow 2$ at the plasma edge
- Nonlinear RWTM
 - chose a very unstable case with $q_a \stackrel{>}{\sim}$ 2, will try a slower growing mode
 - no rotation: mode grows larger with a resistive wall than with ideal wall.
 - * Δ' is larger.
 - * There is pressure loss with an ideal wall, because $B_n \neq 0$.
 - shear free rotating wall
 - * fast rotation is like ideal wall
 - sheared rotation
 - * sheared rotation is like shear free
 - * sheared rotation can also stabilize modes completely
 - * locking is more like shear free, with a pre existing mode
 - self locking if $b_n \neq 0$, drive