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Objectives 
Our aim is to investigate disruptive transients where vertical 
displacement is important.  Comprehensive modeling should be 
able to predict: 

•  Development of open-field current  
•  Destabilization of external kink 
•  Forces and heat deposition on walls 

 

Results presented here have more limited objectives: 

•  Demonstration of MHD-based VDE simulation with 
separation of Alfvén, wall, and resistive timescales 

•  Testing boundary conditions on V and n 



•  VDE modeling with NIMROD 
•  Two-region domain 
•  MHD system for inner region 
•  Boundary conditions 

•  Evolution from double-null configuration 
•  Single-null computations 

•  Comparison of boundary conditions 
•  Parallel flows 

•  Discussion and conclusions 
•  Summary of recent development 
•  Future work 

Outline 



VDE Modeling with NIMROD:  The plasma 
region is coupled to an external vacuum region 
through a resistive wall. 

•  Plasma is modeled in the central 
region. 

•  The central region is coupled to a 
meshed external region that is also 
solved in NIMROD’s representation. 

•  The plot on the right demonstrates 
poloidal flux leaking into a annular 
external region.  

•  Regions are coupled by a 
numerically implicit implementation 
of the thin-wall equation. 
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Faraday’s / Ohm’s law 
with diffusive error control 

low-ω Ampere’s law 

flow evolution 

continuity with diffusive 
numerical fluxes 

temperature evolution 

•  B, n, T, and V are advanced in time with the NIMROD code’s implicit 
leapfrog method [Sovinec and King, JCP 229, 5803 (2010)]. 
•  The diffusive control of divergence error works well with high-order 
elements [Sovinec, et al., JCP 195, 355 (2004)]. 
•  The particle diffusion terms provide numerical smoothing. 

Plasma evolution in the central region is modeled with 
a single-fluid, single-temperature system. 



•  Spitzer η ~ T −3/2 is used throughout the central computational region 
that models plasma. 

•  The cases shown below have τA≅1 and η(0)=10−6.  With a≅0.75, 
S(0)≅5×105.  T profiles vary by 104. 

•  Number density profiles vary by 10. 

•  Large resistivity outside the plasma part of the central region 
keeps current density negligible. 

•  Thermal conduction is anisotropic,                                                 , 
with χ||=5×10−2 and χ =5×10−6. 

•  Viscous stress is isotropic,                                                       , with 
νiso=5×10−5. 

•  Sources and heating are not included in these computations. 

The present modeling is simplified, but closure 
relations are important. 
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Computation in the outer vacuum region 
approximates magnetostatic responses. 

•  The standard approach uses a magnetic potential. 

B =∇χ , ∇2χ = 0 in Rout , n̂ ⋅∇χ = Bnout  on ∂Rout
where χ may be multi-valued in regions that are not topologically 
spherical. 

•  This is convenient in NIMROD, which solves the plasma response in 
terms of B. 

•  Induction from changes in Ip appear through surface-Etang. 
•  Outer-region computations are fast relative to the plasma update. 

•  A given static solution can also be found as the long-time response 
to a diffusion problem.  
∂
∂t
B =ηout∇

2B n̂ ⋅B = Bnout  on ∂Rout

τwall >> L
2 ηout( )



•  Standard conditions for NIMROD simulations with thermal conduction 
and particle diffusion are: 

•  n and T remain fixed at their initial low values. 

•  All components of flow are zero, V = 0. 

•  Conditions based on magnetic drift have been implemented: 

•  Flow drifts out, based on the resistive-wall E. 

•  T remains fixed at its initial value. 

•  n is either fixed or advects into the resistive wall,                       , 
which has been implemented with the explicit (old) n at each step. 

•  Along the outer boundary,               , so          is fixed. 

Boundary conditions on B are set at the outer 
boundary, while conditions on n, T, and V are set 
along the perimeter of the central region. 

n̂ ⋅V = n̂ ⋅ 1
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ηw
µ0δx

#

$
%

&

'
(n̂×δB

n̂ ⋅ Γ = n̂ ⋅ nV( )

n̂×E = 0 n̂ ⋅B



Double-null case: This configuration models 
vertical instability from loss of divertor-coil current. 
•  The initial state is from a free-

boundary Grad-Shafranov 
computation with NIMEQ [Howell 
and Sovinec, CPC 185, 1415 (2014)]. 

•  P(ψ) and F(ψ) profiles are simple 
quadratic and linear functions, 
respectively, but values are based 
on DIII-D with F nearly uniform and 
β(0)=8%. 

•  The MHD computations have n 
fixed and drift conditions on V along 
the inner-region boundary. 

Inner-‐region	  poloidal	  flux	  (le2)	  and	  
pressure	  (right)	  from	  equilibrium	  
computa<on.	  

•  The resistive wall sets the time-scale for vertical displacement. 
•  τr for the initial profile is of order 105. 
•  With ηw/µ0δx = 10−3 and a ~ 1, τw ~ 103. 



The simulated tokamak remains vertically centered 
in a “control” case. 
•  Here, all coil currents are fixed. 
•  There is a transient, possibly from poor initialization of secular flux in 

the outer region, and the net motion is radial. 

Plasma	  current	  drops	  by	  6%	  over	  the	  first	  
300	  τA,	  and	  internal	  energy	  increases	  over	  
the	  first	  700	  τA,	  as	  the	  discharge	  moves	  
radially	  inward.	  

Contours	  of	  ini<al	  (le2)	  and	  final	  (right)	  
pressure	  show	  radial	  mo<on	  and	  
compression.	  	  	  

t=0	   t=1600	  



Turning the upper divertor coil off at t = 0 initiates a vertical 
instability that develops on the wall timescale. 

t=2530	  t=1680	  t=530	  

Ver<cal	  displacement	  is	  evident	  in	  contours	  of	  poloidal	  
flux	  (black)	  overlaid	  on	  contours	  of	  pressure	  (same	  scale	  
for	  all	  <mes).	  

Thermal	  energy	  (red)	  
decreases	  more	  rapidly	  
than	  current.	  

•  The external magnetic perturbation diffuses through the wall. 
•  Radial motion and initial evolution in Ip resemble the control case. 
•  Vertical motion and loss of thermal energy are consequences of the 

magnetic perturbation. 
•  The tokamak remains hot while in contact with the wall. 



The current density profile evolves significantly while Ip 
changes slowly. 

t=530	   t=1680	   t=2530	  

Reversed	  current	  develops	  
during	  early	  dynamics.	  	  

•  The magnitude of Jφ increases over time. 
•  A thin halo of positive (axisymmetric) toroidal current supports 

pressure and RBφ late in time. 

Halo	  current	  that	  supports	  
equilibrium	  is	  evident.	  



Single-null cases: We compare boundary 
conditions on n and V in this configuration. 

•  Initial conditions are taken from a 
fixed-boundary Grad-Shafranov 
computation. 

•  External region has a horseshoe 
shape. 

•  External coil currents are fixed. 
•  Decay of initial eddy currents allows 

axisymmetric displacement. 
•  Along the resistive wall, 

computations use either          or the 
drift condition, 

•  Boundary conditions on n are either 
inhomogeneous Dirichlet or as 
governed by advective flux. 

Poloidal	  flux	  (le2)	  and	  pressure	  (right)	  
for	  the	  ini<al	  condi<ons.	  

As in the previous cases, 
•  τr for the initial profile is of order 105. 
•  With ηw/µ0δx = 10−3 and a ~ 1, τw ~ 103. 

n̂ ⋅V = n̂ ⋅ 1
B2
Ew ×B

V = 0



Decay of the initial eddy currents leads to slow 
axisymmetric instability. 
•  Over 400 τA, plasma current (Ip) decreases by 25% and thermal 

energy decreases by 31%. 

Plasma	  current	  evolu<on	  through	  600	  τA.	  	  	   Internal	  energy	  decays	  faster	  than	  
current	  a2er	  300	  τA	  due	  to	  thermal	  
transport	  from	  outer	  surfaces.	  



Displacement from the decay of eddy currents is 
primarily radial in these cases. 

•  This configuration has an attracting coil at R=2.6, Z=0 (triangularity) 
between vertical-field coils at Z=±1.2. 

•  Edge plasma cools through contact with the wall as the configuration 
changes from diverted to limited. 

t=400	  t=200	   t=580	  

Contours	  of	  temperature	  (same	  scale	  for	  all	  <mes)	  show	  that	  confinement	  remains	  intact	  
for	  a	  central	  core	  region.	  



With the Dirichlet boundary condition on n, diffusion 
allows mass to escape. 
•  Mass piles-up in layers near the points of contact. 
•  Outward mass flux results from                                                  along 

the surface. 
•  The scale of the layers is affected by Dn and Dh values (5×10-6 and 

1×10-10, respectively). 

t=400	  t=200	   t=580	  

n̂ ⋅ ΓD = −n̂ ⋅ Dn∇n−Dh∇∇
2n( )

Contours	  of	  par<cle	  density	  show	  a	  thin	  pile	  (marked	  in	  red)	  near	  the	  contact	  point.	  



The evolution of current and thermal energy is 
essentially unchanged when the normal component 
of flow is set by Ew✕B drift. 
•  The comparison here is through 300 τA. 
•  Mass flow through the boundary is set by                       in the 

computation with the drift-flow condition. 

Plasma	  current	  comparison	  through	  300	  τA.	  	  	   Internal	  energy	  again	  decays	  faster	  than	  
current	  near	  the	  end	  of	  this	  period.	  

n̂ ⋅ Γ = n̂ ⋅ nV( )



Accumulation of mass along the surface is larger 
with the advective mass flux condition, however.  

t=300	  t=300	  

Mass	  density	  at	  300	  τA	  with	  Vn=0	  and	  
diffusive	  par<cle	  flux	  along	  surface.	  	  	  

Mass	  density	  at	  300	  τA	  with	  dri2	  
ouRlow	  and	  advec<ve	  par<cle	  flux	  
(no	  diffusive	  flux)	  along	  the	  surface.	  	  	  



•  Along the outer wall, δB≅0.1 and Bφ=1, so the normal component of the 
Ew×B drift is approximately 10−4. 

•  VR exceeds 10−2, 100 times larger, so the Ew×B drift is negligible. 
•  Bφ≅5Bpol near the outer wall, and with Vφ=0.07, V is largely parallel to B. 

Radial component of 
V near contact point. 

The flow velocity that sends mass to the wall is larger 
than the Ew✕B drift, hence the accumulation of mass. 

Contours of Vφ with poloidal 
vector components at 300 τA. 



Low-density flow from the 
remnant becomes 
supersonic when cooled. 

Parallel flow along open surfaces is accelerated by 
thermal pressure. 

•  Plasma inertia is important for the open-field parallel flow. 
•  A parameter scan (not displayed) finds that flows in the remnant region 

are sensitive to thermal conductivity and viscosity. 

Near-sonic parallel flow 
develops around confined 
region; color=M||, lines=cia. 

Contours ion-acoustic speed 
at 900 τA show a confined 
region and a remnant. 



Discussion and Conclusions 
•  Results with Ew✕B drift conditions at the wall and advective 

particle flux are similar to results with Vn=0 and Dirichlet 
conditions on n. 

•  The extent of mass accumulation differs, and the diffusive 
flux case allows greater loss of mass. 

•  Near-sonic parallel flows result from thermal effects. 
•  The boundary conditions on flow do not impede magnetic 

diffusion through the wall.  [Also see Strauss, PoP 21, 032506 
(2014).] 

•  The computations also illustrate the applicability of implicit 
methods to slowly evolving states. 
•  Timesteps in the computations are of order 0.1-1 τA, 

approximately 5000 times larger than explicit. 
•  They 1-10 times larger than the flow-CFL condition. 



Summary of Recent Development 
•  Free-boundary Grad-Shafranov solves in NIMEQ 
•  Parallel computation for multi-region problems with implicit 

coupling through the resistive wall 
•  Annular mesh assembly for outer regions  



Next Steps 

•  Improved outer-region initialization of secular flux. 
•  Evaluate stresses on the wall. 
•  Use more realistic closures for thermal conductivity and 

viscosity. 
•  Include sources: heating, current drive, particle source.  
•  Investigate coupled VDE/kink dynamics in three dimensions. 
•  Implement boundary relations that model sheath conditions. 



The low-temperature remnant region is shaped by 
poloidal flux, hence anisotropic thermal conduction. 



Profiles of density and temperature 
show greater vertical displacement. 

Another case does not use the outboard shaping coil, 
and the subsequent evolution is slower. 

•  The drift condition is used on Vn, but the Dirichlet condition is used for n. 
•  The upper limit on η is 1, and η(T) varies by 106 over the central region. 

n at t=760 T at t=760 Jφ at t=760 

Contours of Jφ 
show a sheet of 
positive current. 

•  This computation uses larger numerical time-steps of ~1.7 τA on average. 

Evolution is slower than 
cases with the shaping 
coil.  Ip is just below 50% 
after nearly 2500 τA. 


