#### Initial Simulations of Hot Vertical Displacement Events with NIMROD

C. R. Sovinec and K. J. Bunkers *University of Wisconsin-Madison* Theory and Simulation of Disruptions July 15-16, 2015

Princeton Plasma Physics Laboratory







#### **Objectives**

Our aim is to investigate disruptive transients where vertical displacement is important. Comprehensive modeling should be able to predict:

- Development of open-field current
- Destabilization of external kink
- Forces and heat deposition on walls

Results presented here have more limited objectives:

- Demonstration of MHD-based VDE simulation with separation of Alfvén, wall, and resistive timescales
- Testing boundary conditions on **V** and *n*

#### Outline

- VDE modeling with NIMROD
  - Two-region domain
  - MHD system for inner region
  - Boundary conditions
- Evolution from double-null configuration
- Single-null computations
  - Comparison of boundary conditions
  - Parallel flows
- Discussion and conclusions
- Summary of recent development
- Future work

# **VDE Modeling with NIMROD:** The plasma region is coupled to an external vacuum region through a resistive wall.

- Plasma is modeled in the central region.
- The central region is coupled to a meshed external region that is also solved in NIMROD's representation.
- The plot on the right demonstrates poloidal flux leaking into a annular external region.
- Regions are coupled by a numerically implicit implementation of the thin-wall equation.

$$\frac{\partial \mathbf{B} \cdot \hat{\mathbf{n}}}{\partial t} = -\hat{\mathbf{n}} \cdot \nabla \times \left[ \left( \frac{\eta_w}{\mu_0 \delta x} \right) \hat{\mathbf{n}} \times \delta \mathbf{B} \right]$$



## Plasma evolution in the central region is modeled with a single-fluid, single-temperature system.

$$\begin{aligned} &\frac{\partial n}{\partial t} + \nabla \cdot \left( n \mathbf{V} \right) = \nabla \cdot \left( D_n \nabla n - D_h \nabla \nabla^2 n \right) \\ &mn \left( \frac{\partial}{\partial t} + \mathbf{V} \cdot \nabla \right) \mathbf{V} = \mathbf{J} \times \mathbf{B} - 2\nabla \left( nT \right) - \nabla \cdot \underline{\Pi} \\ &\frac{3}{2} n \left( \frac{\partial}{\partial t} + \mathbf{V} \cdot \nabla \right) T = -nT \nabla \cdot \mathbf{V} - \nabla \cdot \mathbf{q} \end{aligned}$$

continuity with diffusive numerical fluxes

flow evolution

temperature evolution

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times (\eta \mathbf{J} - \mathbf{V} \times \mathbf{B}) + \kappa_b \nabla \nabla \cdot \mathbf{B}$$

Faraday' s / Ohm' s law with diffusive error control

 $\mu_0 \mathbf{J} = \nabla \times \mathbf{B}$ 

low- $\omega$  Ampere's law

- **B**, *n*, *T*, and **V** are advanced in time with the NIMROD code's implicit leapfrog method [Sovinec and King, JCP **229**, 5803 (2010)].
- The diffusive control of divergence error works well with high-order elements [Sovinec, *et al.*, JCP **195**, 355 (2004)].
- The particle diffusion terms provide numerical smoothing.

## The present modeling is simplified, but closure relations are important.

- Spitzer  $\eta \sim T^{-3/2}$  is used throughout the central computational region that models plasma.
  - The cases shown below have τ<sub>A</sub>≅1 and η(0)=10<sup>-6</sup>. With a≅0.75, S(0)≅5×10<sup>5</sup>. *T* profiles vary by 10<sup>4</sup>.
  - Number density profiles vary by 10.
  - Large resistivity outside the plasma part of the central region keeps current density negligible.
- Thermal conduction is anisotropic,  $\mathbf{q} = -n \left[ \chi_{\parallel} \hat{\mathbf{b}} \hat{\mathbf{b}} + \chi_{\perp} \left( \mathbf{I} \hat{\mathbf{b}} \hat{\mathbf{b}} \right) \right] \cdot \nabla T$ , with  $\chi_{\parallel} = 5 \times 10^{-2}$  and  $\chi^{\perp} = 5 \times 10^{-6}$ .
- Viscous stress is isotropic,  $\underline{\Pi} = -nm_i v_{iso} \left( \nabla \mathbf{V} + \nabla \mathbf{V}^T \frac{2}{3} \mathbf{I} \nabla \cdot \mathbf{V} \right)$ , with  $v_{iso} = 5 \times 10^{-5}$ .
- Sources and heating are not included in these computations.

# Computation in the outer vacuum region approximates magnetostatic responses.

• The standard approach uses a magnetic potential.

$$\mathbf{B} = \nabla \chi, \quad \nabla^2 \chi = 0 \text{ in } R_{out}, \quad \hat{\mathbf{n}} \cdot \nabla \chi = B_{n_{out}} \text{ on } \partial R_{out}$$

where  $\chi$  may be multi-valued in regions that are not topologically spherical.

- A given static solution can also be found as the long-time response to a diffusion problem.  $\left(\tau_{wall} >> L^2/\eta_{out}\right)$  $\frac{\partial}{\partial t}\mathbf{B} = \eta_{out}\nabla^2\mathbf{B}$  subject to  $\hat{\mathbf{n}} \cdot \mathbf{B} = B_{n_{out}}$  on  $\partial R_{out}$ .
  - This is convenient in NIMROD, which solves the plasma response in terms of **B**.
  - Induction from changes in  $I_{p}$  appear through surface- $\mathbf{E}_{tang}$ .
  - Outer-region computations are fast relative to the plasma update.

#### Boundary conditions on **B** are set at the outer boundary, while conditions on n, T, and **V** are set along the perimeter of the central region.

- Standard conditions for NIMROD simulations with thermal conduction and particle diffusion are:
  - *n* and *T* remain fixed at their initial low values.
  - All components of flow are zero,  $\mathbf{V} = 0$ .
- Conditions based on magnetic drift have been implemented:
  - Flow drifts out, based on the resistive-wall E.

$$\hat{\mathbf{n}} \cdot \mathbf{V} = \hat{\mathbf{n}} \cdot \frac{1}{B^2} \mathbf{E}_w \times \mathbf{B}$$
, where  $\mathbf{E}_w = \left(\frac{\eta_w}{\mu_0 \delta x}\right) \hat{\mathbf{n}} \times \delta \mathbf{B}$ 

- *T* remains fixed at its initial value.
- *n* is either fixed *or* advects into the resistive wall,  $\hat{\mathbf{n}} \cdot \Gamma = \hat{\mathbf{n}} \cdot (n\mathbf{V})$ , which has been implemented with the explicit (old) *n* at each step.
- Along the outer boundary,  $\hat{\mathbf{n}} \times \mathbf{E} = \mathbf{0}$ , so  $\hat{\mathbf{n}} \cdot \mathbf{B}$  is fixed.

# **Double-null case:** This configuration models vertical instability from loss of divertor-coil current.

- The initial state is from a freeboundary Grad-Shafranov computation with NIMEQ [Howell and Sovinec, CPC 185, 1415 (2014)].
- P(ψ) and F(ψ) profiles are simple quadratic and linear functions, respectively, but values are based on DIII-D with F nearly uniform and β(0)=8%.
- The MHD computations have n fixed and drift conditions on V along the inner-region boundary.
- The resistive wall sets the time-scale for vertical displacement.
  - $\tau_r$  for the initial profile is of order 10<sup>5</sup>.
  - With  $\eta_w / \mu_0 \delta x = 10^{-3}$  and  $a \sim 1$ ,  $\tau_w \sim 10^3$ .



Inner-region poloidal flux (left) and pressure (right) from equilibrium computation.

#### The simulated tokamak remains vertically centered in a "control" case.

- Here, all coil currents are fixed.
- There is a transient, possibly from poor initialization of secular flux in the outer region, and the net motion is radial.





Plasma current drops by 6% over the first 300  $\tau_A$ , and internal energy increases over the first 700  $\tau_A$ , as the discharge moves radially inward.

Contours of initial (left) and final (right) pressure show radial motion and compression.

#### Turning the upper divertor coil off at t = 0 initiates a vertical instability that develops on the wall timescale.

- The external magnetic perturbation diffuses through the wall.
- Radial motion and initial evolution in  $I_p$  resemble the control case.
- Vertical motion and loss of thermal energy are consequences of the magnetic perturbation.
- The tokamak remains hot while in contact with the wall.



#### The current density profile evolves significantly while $I_p$ changes slowly.

- The magnitude of  $J_{\phi}$  increases over time.
- A thin halo of positive (axisymmetric) toroidal current supports pressure and  $RB_{\phi}$  late in time.



Reversed current develops during early dynamics.

Halo current that supports equilibrium is evident.

# **Single-null cases**: We compare boundary conditions on *n* and **V** in this configuration.

- Initial conditions are taken from a fixed-boundary Grad-Shafranov computation.
- External region has a horseshoe shape.
- External coil currents are fixed.
- Decay of initial eddy currents allows axisymmetric displacement.
- Along the resistive wall, computations use either V = 0 or the drift condition,

$$\hat{\mathbf{n}} \cdot \mathbf{V} = \hat{\mathbf{n}} \cdot \frac{1}{B^2} \mathbf{E}_w \times \mathbf{B}$$

 Boundary conditions on *n* are either inhomogeneous Dirichlet or as governed by advective flux.



Poloidal flux (left) and pressure (right) for the initial conditions.

As in the previous cases,

- $\tau_r$  for the initial profile is of order 10<sup>5</sup>.
- With  $\eta_w/\mu_0 \delta x = 10^{-3}$  and  $a \sim 1$ ,  $\tau_w \sim 10^3$ .

#### Decay of the initial eddy currents leads to slow axisymmetric instability.

• Over 400  $\tau_A$ , plasma current ( $I_p$ ) decreases by 25% and thermal energy decreases by 31%.



Plasma current evolution through 600  $\tau_A$ .

Internal energy decays faster than current after 300  $\tau_A$  due to thermal transport from outer surfaces.

# Displacement from the decay of eddy currents is primarily radial in these cases.

- This configuration has an attracting coil at R=2.6, Z=0 (triangularity) between vertical-field coils at Z=±1.2.
- Edge plasma cools through contact with the wall as the configuration changes from diverted to limited.



Contours of temperature (same scale for all times) show that confinement remains intact for a central core region.

## With the Dirichlet boundary condition on *n*, diffusion allows mass to escape.

- Mass piles-up in layers near the points of contact.
- Outward mass flux results from  $\hat{\mathbf{n}} \cdot \Gamma_D = -\hat{\mathbf{n}} \cdot \left( D_n \nabla n D_h \nabla \nabla^2 n \right)$  along the surface.
- The scale of the layers is affected by  $D_n$  and  $D_h$  values (5 × 10<sup>-6</sup> and 1×10<sup>-10</sup>, respectively).



# The evolution of current and thermal energy is essentially unchanged when the normal component of flow is set by $E_w \times B$ drift.

- The comparison here is through 300  $\tau_A$ .
- Mass flow through the boundary is set by  $\hat{\mathbf{n}} \cdot \Gamma = \hat{\mathbf{n}} \cdot (n\mathbf{V})$  in the computation with the drift-flow condition.



Plasma current comparison through 300  $\tau_{A}$ .

Internal energy again decays faster than current near the end of this period.

## Accumulation of mass along the surface is larger with the advective mass flux condition, however.



Mass density at 300  $\tau_A$  with  $V_n$ =0 and diffusive particle flux along surface.



Mass density at 300  $\tau_A$  with drift outflow and advective particle flux (no diffusive flux) along the surface.

#### The flow velocity that sends mass to the wall is larger than the $E_w \times B$ drift, hence the accumulation of mass.

- Along the outer wall, δB≅0.1 and B<sub>φ</sub>=1, so the normal component of the E<sub>w</sub>×B drift is approximately 10<sup>-4</sup>.
- $V_R$  exceeds 10<sup>-2</sup>, 100 times larger, so the  $E_w \times B$  drift is negligible.
- $B_{\phi} \approx 5B_{pol}$  near the outer wall, and with  $V_{\phi} = 0.07$ , **V** is largely parallel to **B**.



Contours of  $V_{\phi}$  with poloidal vector components at 300  $\tau_A$ .



V near contact point.

#### Parallel flow along open surfaces is accelerated by thermal pressure.



Contours ion-acoustic speed at 900  $\tau_A$  show a confined region and a remnant.

Near-sonic parallel flow develops around confined region; color= $M_{\parallel}$ , lines= $c_{ia}$ .

Low-density flow from the remnant becomes supersonic when cooled.

- Plasma inertia is important for the open-field parallel flow.
- A parameter scan (not displayed) finds that flows in the remnant region are sensitive to thermal conductivity and viscosity.

#### **Discussion and Conclusions**

- Results with  $E_w \times B$  drift conditions at the wall and advective particle flux are similar to results with  $V_n=0$  and Dirichlet conditions on n.
  - The extent of mass accumulation differs, and the diffusive flux case allows greater loss of mass.
  - Near-sonic parallel flows result from thermal effects.
  - The boundary conditions on flow do not impede magnetic diffusion through the wall. [Also see Strauss, PoP 21, 032506 (2014).]
- The computations also illustrate the applicability of implicit methods to slowly evolving states.
  - Timesteps in the computations are of order 0.1-1  $\tau_A$ , approximately 5000 times larger than explicit.
  - They 1-10 times larger than the flow-CFL condition.

#### Summary of Recent Development

- Free-boundary Grad-Shafranov solves in NIMEQ
- Parallel computation for multi-region problems with implicit coupling through the resistive wall
- Annular mesh assembly for outer regions

#### Next Steps

- Improved outer-region initialization of secular flux.
- Evaluate stresses on the wall.
- Use more realistic closures for thermal conductivity and viscosity.
- Include sources: heating, current drive, particle source.
- Investigate coupled VDE/kink dynamics in three dimensions.
- Implement boundary relations that model sheath conditions.

The low-temperature remnant region is shaped by poloidal flux, hence anisotropic thermal conduction.



## Another case does not use the outboard shaping coil, and the subsequent evolution is slower.

- The drift condition is used on  $V_n$ , but the Dirichlet condition is used for n.
- The upper limit on  $\eta$  is 1, and  $\eta(T)$  varies by 10<sup>6</sup> over the central region.



• This computation uses larger numerical time-steps of ~1.7  $\tau_A$  on average.