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@ Dreicer mechanism [Gurevich 1960; Connor and Hastie 1975]

[Ismailov, Aleynikov, Konovalov, “Dreicer mechanism of runaway electron generation
in presence of high-Z impurities”, EPS 2016]

Hot-tail mechanism [Chiu 1998; Helander 2004; Smith 2008]

A revised version of the “hot-tail” ideas brings interesting new results [this

@esentation]

@

Avalanche [Rosenbluth and Putvinski 1997]
“Near-threshold” regime [Aleynikov and Breizman PRL 2015]
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The model
Consider, for example, the “killer-pellet” thermal quench (TQ)
1. Maxwellian pre-quench electrons (n,, T)) with Spitzer correction (j,)
2. Pellet delivers cold ions and n,,,;, > n, after ionization

3. The timescales for collisions are:
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1. The current density is constant during the TQ. The electric field evolves
accordingly.

J, :fev||F(t,E)dpsin(6’)d9+awldE(t)

1. o.yq41s determined by hot population energy release and line-radiation
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2D evolution of the hot electron distribution

Conservation of the total current prohibits slowing down of the entire
hot population. The surviving hot electrons form a runaway beam.
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Hot electron survival in the limit of o ,,=0

In the limit of 6_,,;=0 (1.e. T, ,;=0) the total current 1s carried by the hot population.
Phase 1. | E

» Electric field rises in step with the loss
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Seed reduction by the bulk conductivity

* If 6.,,=0, all the post-TQ current
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Cooling down on impurities

If instantaneous deposition of neutrals 1s assumed (valid for pellet injection)

The ordering of collisions and ionization:
— Initially, only hot electrons ionize impurity neutrals

dn cold __ ‘ <

i>Maxwell
— Thompson ionization cross-section
me 1 [1 1 ]
o=—7—|"—=
(4me,)” E\I E
IT nj,, Is large than ionization rate is faster than thermalisation of cold electrons
with hot population (Spitzer slowing-down time).

In particular, in few keV plasma, 1onisation rate for first few Argon electrons
1 d”l cold

n,, dt

1

- ~15 3 —
an.mp10 m’s

Forn, > 10" ma separate “cold” Maxwellian population will be formed quicker
than in a fraction of a millisecond

4 cold—cold > Vhot—cold >> Vhot—hot
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Self-consistent TQ

» Self-consistent temperature evolution:

ow, +
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1) Hot electrons heat the “cold” bulk via
Coulomb collisions

2) The bulk overtakes a fraction of the current :"D
3a) Bulk conductivity drops due to radiative
losses

3b) The hot population decreases in the
meantime

There are two possible outcomes:

1. Prompt conversion regime: purple & blue

Low energy REs carry the total current at low
electric field.

2. Seed for avalanche regime: & red

Ohmic current requires high electric field -> 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
high energy REs + avalanche. Time variable, s
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Scan over initial plasma parameters

Contour plot of the survived hot electron population density (normalized to j /ec)
>1.0 is the prompt conversion regime (100% is sub-MeV RE current)

T(), keV
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nap, 1029m =3
e The electric field 1s supercritical (E/E,~4+8) in the prompt conversion regim (due

to relatively slow transformation of the 100keV RE into IMeV RE current )
 The seed density has a non-monotonic dependence on pre-quench temperature
with a maximum at T ~4keV
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Non monotonic behavior of n (T,)

. . . . 8

Bulk cooling down time is a monotonic ,

function of T, ’
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Argon and Neon in ITER

[B.Green, PPCF 45 (2003) 687]
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For ITER-relevant profiles (Ar injection): > 25 ﬁ- 10 5
: < 20 e © @
1. Prompt conversion of full current for n,>10*m=> & -
2. RE-free disruption for n, <3x10"m-3 = 10 S
: : 5 ¥
3. Non-monotonic radial RE profile G g
~ &
T
=" s
SY]Y z
= QO -
TV B
Q -
v&l <’)\ %
Bo! o~ 0
0. £ 00 02 04 06 08 L0
r/a
T 1.6 T ! T 108
| <,) LI Sem—— RIS S iy L)
E O 7 5 SN 7
\ 10 o 1.2 F- 10
gq’g\? TR s s >
S C)\ QD 1()(» 5 E- oskF \ ......... ........ 106 )
ﬁx Q < O : ; : =
QN = = 0.6 oo <
> Q - o) ! : ] 5&
'S\P)\, Q’?) 101 — 04 ———— g Beeeneniens v 10
> (/)\ 0.2 _\ AAAAAAA AAAAAAAA
& 10° 0 S 10*
1.0 1.5 2.0 2.5 3.0 0 5 10 15 20
ne, 1020m =3 To(r), keV
Theory and Simulation of Disruptions Workshop 20-22 July 2016 | Page 11/13



Argon injection in smaller machines

DIII-D is different from ITER:
1. T, <5 keV exhibit peaking of the RE seed toward the core

2. High current density (~3 MA/m?) facilitates hot electron survival and favors the
Dreicer generation

3. Decrease of n, (and ny/n,,) at the periphery leads to prompt conversion in this area
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Summary of RE generation model

« Prompt conversion of the pre-quench current into the sub-MeV RE current is

feasible for abundant impurity injection.
Note: Prompt conversion looks tolerable for the plasma position control. The
subsequent slow decay of the RE current should follow the near-threshold regime
governed by the impurity amount.

 RE formation is less efficient at high pre-quench temperatures (>4keV), which
should produce significant radial variation of the runaway seed (in contrast with
the present-day < 4keV experiments, where REs are peaked at the core).

* Non-uniformity of the plasma allows the post-quench current to be carried by
two distinct runaway populations (a sub-MeV and an ultra-relativistic).

» [P.Aleynikov, B.N.Breizman, Generation of runaway electrons during the thermal quench
in tokamaks, Manuscript submitted for publication]

* 1D seed + avalanche calculations are ongoing
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Extra
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Dreicer mechanism in presence of high-Z impurities

« As electrons accelerate they start to interact with bound electrons and scatter on
shielded high-Z impurities, unlike thermal electrons.

o “Extra” friction reduces the Dreicer flow

» The effect is less pronounced at high electric field
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presence of high-Z impurities”, EPS 2016]
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MHD stability of post-disruption plasmas in ITER

2D plasma evolution with DINA

Linear MHD stability analysis of unperturbed equilibrium with CASTOR and
MISHKA

e A variety of different modes can
appear In  post-disruption
plasma with RE

e Results are sensitive to the RE
seed profile

[K. Aleynikova, G.T.A. Huijsmans, P. Aleynikov, Linear MHD stability Fc{malysis of post-
disruption plasmas in ITER, Plasma Physics Reports 42 (2016)]
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DIlI-D QRE modeling

« Experimental data is used to calculated the evolution of the distribution function
» The time-dependent kinetic equation 1s solved numerically

Without the avalanche a clear bump is formed around p,,, after the puff
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DIlI-D QRE modeling

« Experimental data is used to calculated the evolution of the distribution function
» The time-dependent kinetic equation 1s solved numerically

With avalanche the bump almost disappears
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