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•  In both quiescent runaway electron experiments (QRE) in DIII-D, and in disruption 
experiments in TFTR, fast growth of high harmonics ECE signal has been observed.

 

Motivation: Non-thermal ECE signal observed in 
runaway electron experiments in tokamak 
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•  The non-thermal ECE signal comes from runaway electron in plasma.

•  REs can give remarkable contribution to ECE, given
      their small population (~10-4 ne).
•  The contribution to high harmonics is more prompt than low harmonics.
•  The growth rate of ECE signal is much higher than HXR growth rate.

 

Motivation: Non-thermal ECE signal observed with 
runaway electron experiments in tokamak (cont’d)
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Absorption and Emission of Electron Cyclotron 
Wave

•  The absorption of the ECE can be represented by ϵA

   (anti-Hermitian part of permittivity tensor)
•  The emission of ECE can be represented by source
   current correlation tensor K

•  Both terms come from the electrons satisfying the resonance condition.

•  For thermal equilibrium (Maxwellian distribution), the ratio of K and ϵA is 
proportional to Te, a result of Fluctuation-Dissipation theorem (or Kirchhoff's law),
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Optically thick vs. optically thin
•  For ECE, plasma can be considered as optically thick if absorption length is much 

smaller than scale length of resonance region.

•   For optically thick case, the wave power
    radiated out is emission/absorption, which is
    only related to the local Te at resonance point.

•   For optically thin case, the wave power is
    related to ne, Te, and the resonance region
    length L.
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Reciprocity theorem
•  Instead of solving the radiated power P by collecting
   waves from all the sources, we solve the reciprocal
   problem, and calculate P using reciprocity theorem.

•  Reciprocal Problem:  
•  Reversed in time
•  Study the transposed plasma with
•  Calculate E+ of the wave that launched from the
   receiver, propagates into plasma, absorbed by
   resonant electrons.
•  Much faster: calculate one wave propagation
   instead of many

•  The measured radiation power
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Runaway electron distribution in momentum space 
evolution
•  RE distribution evolution in momentum space
   is calculated using CODE

•  Include the synchrotron radiation energy 
damping

•  Include the secondary RE generation 
(avalanche)

•  The calculated RE tail is flat in p, but strongly 
anisotropic in pitch angle especially for highly 
relativistic electrons. 
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Dreicer 

Avalanche 

ne = 0.5 ×10
19m−3,Te = 1keV

E / ECH = 12,B = 1.5T
nRE (t = 7s) / ne ≈10

−3

A.H. Boozer, Phys. Plasmas 22, 032504 (2015). 
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Major contributions to ECE emission comes from 
REs in the intermediate energy regime
•  The source current correlation tensor can be calculated from RE distribution

•  Jn is sensitive to k⊥ρe	(k⊥ρe=k⊥p⊥/(Be)=k⊥γmev⊥/(Be)) especially for large n.

•  The value of k⊥ρe depends on both electron
   energy (γ) and pitch angle (v⊥).

•  Results show that major contributions to Kxx

   comes from REs in the intermediate energy
   regime (0.5<p/mec<2).

13 

 
Kxx = 4e

2ne d 3p feδ (ω − k!v! −
nω ce

γ
) v⊥

2 n2

k⊥
2ρe

2 Jn
2 k⊥ρe( )⎡

⎣
⎢

⎤

⎦
⎥∫

n=−∞

∞

∑

n=3 

n=4 

n=5 
n=6 

n=7 

ω=2.9ωce0 

Jn
2 (z) ~ 1

n!2
z
2

⎛
⎝⎜

⎞
⎠⎟
2n



Outline
•  Motivation: Non-thermal ECE signal observed in runaway electron 

experiments in tokamak

•  Introduction to Electron Cyclotron Emission (ECE)
•  Optical thickness
•  Reciprocity theorem

•  Runaway electron (RE) growth and distribution in momentum space

•  Synthetic diagnostic calculation of RE ECE radiation
•  Absorption and emission of ECE by RE
•  ECE spectrum from RE
•  Time evolution of ECE signal

•  Summary

14 



The process of RE ECE synthetic diagnostic 
calculation

•  For current calculation we used simplified model
•  ne and Te are treated as a constant, B~1/R.
•  ky=kz=0, k is perpendicular to B.
•  Only include X-mode, ignoring mode conversion

•  The allowed wave branches for Cherenkov radiation are: Langmuir wave, 
extraordinary-electron (EXEL) wave, and upper-hybrid wave (electrostatic 
Bernstein wave).
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Here we show one example of calculation of reciprocal wave E+ and current 
correlation Kxx for ω=2.5ωce(R0).

•  High harmonic absorption is
   significantly lower than low harmonic.

•  The absorption is localized near the
   resonance region.

•  Plasma is optically thick for n=2 resonance,
   whereas optically thin for n=3 resonance.

ECE absorption from thermal electrons is strongly 
localized
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Here we show one example of calculation of reciprocal wave E+ and current 
correlation Kxx for ω=2.5ωce(R0).

•  RE contribution to the absorption is
   nonlocal and not limited to resonance region.

•  The runaway electrons have little impact
   on the ECE wave absorption.

ECE absorption from RE is nonlocal, but very small
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Here we show one example of calculation of reciprocal wave E+ and current 
correlation Kxx for ω=2.5ωce(R0).

•  The emission-absorption ratio of ECE from
   RE is much larger than thermal electrons.

•  RE distribution is not in thermal
       equilibrium.

•  Given plasma is optically thin for high
   harmonics (n≥3) ECE wave, the radiation
   from RE can propagate outside and
   get collected by receiver.

0.8 0.9 1 1.1 1.2
10−6

10−4

10−2

100

R (R0)

 

 

εA
xx

E+
y

π2 Kxx/(ω Te))

ECE emission from RE is important and accessible
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Effective Temperature of RE distribution•  To show the reason of high emission-absorption
ratio, we define “effective temperature” at every
momentum p for RE distribution

•  Results show Teff≫ Te for large p, consistent
   with the small absorption of ECE by RE tail.

Effective Temperature of RE distribution
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Spectrum of ECE signal from RE is smoother than 
thermal electrons
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t=7s
t=3s
t=0s•  For thermal electrons, the radiation

   power behaves like step-function
   as frequency increases.

•  Growth of RE makes the spectrum
   flatter, which is consistent with the
   experiments.
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Time evolution of RE ECE signal
•  ECE signals shows exponential growth,
   with the same growth rate as RE
   avalanche growth.
•  The growth rate is still much smaller
   compared to experiments.
•  The catch-up of higher harmonic
   signal is not observed.

•  Conjectures
•  Kinetic modes that cause fast pitch angle
scattering effect (fan instability) for RE
distribution.
•  RE forming moving filaments when
confined in magnetic islands, which can
give fast and instantaneous signal through lighthouse effect.
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Summary
•  Using newly-developed RE ECE synthetic diagnostic tool, we successfully calculate ECE 

signals from RE.
•  Due to the small absorption and large emission, and nonlocal spatial distribution of 

both, RE can give significant contributions to ECE radiation.
•  Flat RE ECE spectrum is observed.
•  The fast growth of ECE signal observed in experiments is not explained.

•  Most ECE radiation comes from REs in intermediate energy regime (0.5<p/mec<2).

•  Conjectures for fast ECE growth
•  Kinetic modes causing fast pitch angle
•  Non-uniform RE spatial distribution and lighthouse effect.

•  Future plans: Using realistic plasma parameters and integrate the module to SDP 
(Synthetic Diagnostic Platform) developed at PPPL.
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Thanks!
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