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Content

Experimental scenarios and rational behind

interpretation of pre-thermal quench

force mitigation in MGI(*) induced plasma termination; 
focus on small gas quantities

thermal load mitigation
     

runaway electron generation and losses; 
focus on MGI suppression

(*) MGI = massive gas injection
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Background

2008-2013: MGI exp.s in AUG aimed at reaching ne ~ nc ~ O (1022) / m3 during  
or just after TQ for RE suppression 

poor impurity assimilation at large Ninj → attempts to reach nc abandoned

ITER DMS consists now of several injectors for 
                                              TQ & force mitigation + RE suppression

TQ: Minimum impurity amount for force & thermal load mitigation? 

CQ: Is control and/or suppression of REs possible?
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AUG: Mitigation valves, relevant diagnostics and coils 
    

interferometer

+ SXR, magnetics, gamma spectrometer, thermography
+ fast camera with filter, halo current, strain gauges

spectrometers
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Thermal quench (TQ) and force mitigation: Experimental conditions

2014 – 2015:

Ninj = 1020-1022 atoms neon with 

one or two in-vessel valves 

mitigated shut-down evolution?

Ip  ~ 1 MA (Emag ~ 1.4 MJ)

Eth = 30 - 750 kJ

q95 ~ 4.2 

results discussed in terms 

of pre-TQ and CQ times ↓

↓

↓ injection trigger
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Simulation of pre-TQ

ASTRA-STRAHL 1-D transport (current, energy, densities, radiation) code 
+ SPIDER 2-D equilibrium

Prad radially localized; impurity layer radiates
→ saturation of pre-TQ time as Ninj increases

reproduces cold front penetration velocity (not shown)

Te neTe Prad

  E. Fable et al, NF (2016)   

time
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Pre-TQ phase: experiment versus simulation

TQ onset in ASTRA: Te at q=2 surface < 5 eV 

comparison experimental times with ASTRA simulations (neon) 

correct Ninj and Eth dependence

experiment ↓                                      simulation ↓ 
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Current quench duration, ∆tCQ

∆tCQ is a design parameter for ITER   ( ∆tCQ = 50 – 150 ms )
 → magnitude of eddy currents, vertical force, Eφ generating REs

Prad ~ - dEmag / dt        → ∆tCQ / S ~ resistivity      
(S = plasma cross section)

AUG ∆tCQ/S within prescribed 
ITER ∆tCQ/S range
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Halo current (Ihalo) mitigation

Loss of plasma position control after TQ  vertical force on vessel→

Ihalo x Bt = large component of vertical force

stepwise behavior ↔ Ip after ∆z = 25 cm (competition ∆z - ∆Ip)

simulations needed for extrapolation to ITER 
(ITPA MHD activity)
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TQ mitigation: radiated energy

Repartition radiated/deposited energy as Ninj decreased?

Erad ~ (Eth + Ein + 5 % Emag) in pre-TQ + TQ is Ninj independent

no clear dependence of Erad / (Eth + Ein) during pre-TQ

Erad / Eth decreases during TQ
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TQ mitigation: power onto divertor

power on outer divertor strike point module (~ 20 x 1 cm2) from infra-red camera
(trade-off spatial-temporal resolution;  TQ power deposition is poloidally broader)

Ediv / Eth: two branches @ low Ninj

single spike & larger Ediv / Eth 

energy losses in sequence 
of spikes (one spike in Ediv)
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Toroidally asymmetric radiation distribution

Prad is poloidally & toroidally asymmetric in pre-TQ & TQ

multiple injectors and mode/plasma rotation reduce asymmetry

relative n=1 X-point – valve position influences radiation asymmetry

(V. Izzo POP, 2013)

AUG: DL induced tearing modes locked by n=1 resonant MP coils @ 

several toroidal location; MGI after LM

Prad asymmetry during pre-TQ & TQ clearly influenced by LM position
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Max Erad(φ=0)/Erad(φ=π) ~ 4 (pre-TQ) and ~ 2 (TQ)

consistent w max when injecting into n=1 X point

w/o rotation effects → data-set for benchmark of 3-D models 

(e.g. JOREK)

Toroidally asymmetric radiation distribution
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RE beam generation

First exp.s in 2014; follow-up in 2015

circular plasma, Ip = 0.8 MA, Bt ~ 2.5 T, ne ~ 2.5 1019 /m3, PECRH > 2 MW,  
Ninj ≤ 2×1021 argon atoms

RE beam (IRE < 400 kA for < 400 ms) reproducible but sensitive to Ip ramp-
up

plasma is vertically stable;
no major MHD instabilities

RE current after 1st Ar injection 
can follow reference Ip – often 
faster  E→ φ from OH system
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Equilibrium, density profile 

Series of equilibria; 
beam position confirmed by SXR

Density profiles in RE beam
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RE suppression with argon

Line integrated density after 1st and 
2nd argon injection (70 ms apart)

RE beam lifetime versus argon Ninj
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Friction force (eEc) on REs from free and bound electrons

Several known mechanisms of RE losses

Only inelastic collisions RE–electrons considered (energy losses)

Formally:

Ec depends on plasma composition (atomic species and ionization state)

1
R E

=
d IR E

d t
1

IR E

=
eE−Ec

pR E

E = V loop /2R 

Ec = e3 ne ln e , free / 4me c2

ne = ne , freeln e , bound/ ln e ,free ne , bound
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Ec versus Eφ

Several spectrometers configured to measure Ar-I, Ar-II, C-II and C-III line 
emission; allow to determine Te, nAr and nC (ne is known)

line radiance:

Xeff: photon emissivity coefficients calculated with a collisional radiative 
model and ADAS208-code (R. Dux)

fz: fractional abundance

comparison of line radiance of C-II 
and C-III with (fz Xeff) suggests 
Te < 2 eV and nAr / ne ~ 100 %

 → Ec > Eφ

(uncertainties in atomic data for argon)

L =
1

4∫ ne nz f f Xeff dl
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Summary

     
Ninj range has been extended: force and thermal load mitigation 
deteriorates below 1021 neon atoms

modelling needed to extrapolate min Ninj to ITER

ASTRA modelling of pre-TQ benchmarked on AUG  can be used →
for MGI in ITER

dedicated exp.s on radiation asymmetry w/o velocity effects to 
benchmark 3-D codes

argon injection causes RE current decay largely accounted for by 
e-RE friction
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