A EUROPEAN EFFORT FOR KINETIC MODELLING OF RUNAWAY ELECTRON DYNAMICS

(EUROFUSION, ER15-CEA-09)

Y. Peysson¹, G. Anastassiou², J.-F. Artaud¹, A. Budai³, J. Decker⁴, O. Embréus⁵, O. Ficker⁶, T. Fülöp⁵, E. Hirvijoki⁷-⁵, K. Hizanidis², Y. Kominis², T. Kurki-Suonio⁸, P. Lauber⁹, R. Lohner³, J. Mlynár⁶, E. Nardon¹, S. Newton¹⁰-⁵, E. Nilsson¹, G. Papp⁹, R. Paprok⁶, G. Pokol³, F. Saint-Laurent¹, C. Reux¹, K. Sarkimaki⁸, C. Sommariva¹, A. Stahl⁶, M. Vlainic⁶, P. Zestanakis²

1) IRFM-CEA, Cadarache, France
2) National Technical University of Athens, Greece
3) BME – NTI, Budapest, Hungary
4) CRPP, Swiss Federal Institute of Technology, Switzerland
5) Chalmers University, Göteborg, Sweden
6) Institute for Plasma Physic, Prag, Czech Republic
7) Princeton Plasma Physics Laboratory, Princeton, USA
8) Aalto University, Finland
9) Max-Planck Institute for Plasma Physics, Garching, Germany
10) Culham Centre for Fusion Energy, UK

https://www2.euro-fusion.org/erwiki
Collisional friction decreases with electron velocity

If electric field $E_{||} > E_{\text{critical}} \sim n_e$, some electrons can be continuously accelerated \rightarrow energies of 10-100 MeV range \rightarrow **runaway electrons (RE)**. *Old problem from the early days of tokamaks.*

Plasmas conditions favorable for RE generation may be *controlled* (low-density at ramp-up,…) or *uncontrolled* (fast disruption).

RE generated if $E > E_c$

$$E_c = n_e \frac{e^3 \ln \Lambda}{(4\varepsilon_0^2 m c^2)}$$

At the Dreicer field even thermal electrons run away

$$E_D = E_c mc^2 / T_e$$

Disruptive or non-disruptive RE

Disruptive RE

Non-disruptive RE

Disruptive RE

Non-disruptive RE

Y. Peysson et al.

IEA workshop on disruptions, July 20-22 2016, PPPL, USA, #3
Amplification of RE growth rate by the avalanche mechanism

- Fast electrons kick others into the runaway region
- Population of runaway electrons grows exponentially in strong electric field
- Avalanche multiplication scales with pre-disruptive plasma current (problem for large tokamaks)

Knock on collisions \rightarrow Avalanche

Needs for modeling the RE dynamics

- If RE carry a large fraction of the plasma current (post-disruption phase), they represent a major threat for a tokamak → beam of RE which can become unstable, hit the wall can cause large damages: **serious issue for the ITER tokamak**.

- In present-day tokamaks also, the danger of runaway-induced damage often limits the range of operation parameters

Aim of the kinetic modeling of RE dynamics: describe the formation of the suprathermal beam (from the early stage), taking into account selfconsistently of transport and non-linear effects especially as RE carry a large fraction of the plasma current → **strong interplay of momentum and configuration spaces**.

Main keywords for characterizing RE dynamics: critical electric field, population growth rate, spatial location (beam), upper energy limit,…
What do we want understand about RE?

- Under which conditions do disruptions give rise to a runaway beam?
- Can this process be prevented or mitigated?
- Is it possible to transport runaway electrons as soon as they are generated?
- If a runaway beam nonetheless forms, what are its characteristics, i.e. what is the electron energy distribution?
- Is it possible to slow it down progressively?
- What are the effects of mitigation techniques such as massive material injection?
Towards a disruption simulator

Answering all these questions ultimately requires a complete disruption simulator solving both a kinetic equation for the runaway dynamics, and a fluid-MHD evolution including massive gas or pellet injection, ionization physics, impurity transport, etc. → This is a long term objective for the community.

But short term objectives must be reached especially for ITER needs, which may be summarized by the two goals:

1) how to prevent the formation of an energetic beam of RE
2) how to mitigate an already existing energetic beam of RE.
Modeling the RE dynamics

The short time scale to get answers on RE physics in a disruption, in particular for ITER has led to split the problem in two projects:

- The kinetic description of runaways is studied in an independent project, → **the kinetic description of runaways is the subject of the ER15-CEA-09 project.**

- The fluid-MHD disruption modelling is the subject of another project (C. Sommariva talk)
Which modeling tools do we want to build or for which goals?

- **short term** (~ 3 years) → improve existing codes (LUKE, CODE, GO, METIS …), incorporate some new physical processes, perform collaborative work for integrated modeling (with ITM ?), benchmark tools against experimental results to validate extrapolation capabilities.

- **medium term** (~ 5 years) → prepare the development of new tools (LUKE 2,…) able to describe more accurately the particle dynamics (orbits, collisionality,…).

- **long term** → perform self-consistent MHD + kinetic calculations
The validity of existing tools for kinetic calculations of disruptive RE is questionable as it is principally a MHD problem at least during the thermal quench: *magnetic topology with nested magnetic flux surfaces is assumed, while strong ergodization is known to take place, with strong losses of RE.*

Even if a confining magnetic configuration is rebuild in the current plateau phase, the toroidal MHD quasi-equilibrium to consider for the kinetic calculations is still an open question. Which tool is appropriate (JOREK, ...)?

Existing kinetic codes can be principally used for building a *heuristic fast simulator for describing time evolution of the RE population in disruptions* which incorporate main transport effects in momentum and configuration spaces such that critical field, population growth rate, spatial location and upper energy of RE may be well reproduced despite the oversimplified description. → validation against experiments and more advanced studies using exact MHD codes (JOREK, NIMROD,...) coupled to appropriate kinetic solvers that can deal with complex topology (Monte-Carlo,...).
The European effort 2015-2017 aims at improving our understanding and modelling of runaway electron dynamics:

1) first focusing on the generation and transport mechanisms (avalanches, additional forces that could limit the formation of a runaway beam, …)

2) later integrating the various processes self-consistently in simulations for comparison with experiments.
Objectives: step 1

Generation and transport mechanisms

- Account for the effect of pre-existing fast electrons and describe the role of hot-tail dynamics in the primary runaway generation.

- Improve the knock-on collisions model for secondary generation process by including the effect of finite incident momentum.

- Account for finite orbit width effects in the runaway dynamics.

- Implement the quasilinear formalism of kinetic instabilities in LUKE, and include the resulting radial transport in the runaway dynamics.

- Account for the effect of magnetic turbulence, magnetic ripple and RMP in the form of an equivalent radial transport model.

- Account for the interaction between runaway electrons with Alfvenic fluctuations.
Objectives: step 2

Integration of the various processes for self-consistent simulations of RE and comparison with experiments

- Build a self-consistent solver for the evolution of the runaway electrons, parallel electric field, and plasma equilibrium (within or outside ITM)

- Investigate the possibility of new synthetic diagnostics specific to characterize the runaway dynamics, especially the crucial build-up phase

- Validate the simulations by comparing with appropriate experimental observations.
Mid-term main achievements

- The physics of synchrotron radiation reaction force (ALD), which is found to limit the runaway electron energy, and leads to significant modifications in the runaway electron distribution. Includes theoretical work and numerical implementation in kinetic solvers (CODE, LUKE).

- Theoretical calculation of the bounce-averaged knock-on collision operator for describing runaway avalanches in realistic magnetic configuration of tokamaks, and implementation in kinetic solver (LUKE).
Observations and scenarios

- Equilibrium reconstruction after thermal quench (ASDEX Upgrade)
- Core confinement after thermal quench (ASDEX Upgrade)
- RE generation and plasma elongation (COMPASS)
- RE generation and initial fuelling (COMPASS)
- Full conversion from OH to runaway current (TCV)
- Beam mitigation (JET)

...

Theory, modeling and data analysis

- Synchrotron reaction force (ALD) + implementation in CODE (Alcator C-Mod)
- Bounce-averaged ALD force + implementation in LUKE
- Bremsstrahlung reaction force + implementation in CODE
- Bounce-averaged knock-on collisions + implementation in LUKE
- Toroidal effect on primary and secondary RE generation (LUKE)
- Relative importance between primary and secondary RE generation (LUKE)
- Near critical field, time and plasma temperature (LUKE)
- Ware pinch effect on runaway electrons dynamics
- Drift diffusion model for RE
- Modeling of non-disruptive RE discharges (Tore Supra with LUKE)
- Modeling RE in realistic fields (with JOREK)

...
Equilibrium reconstruction post thermal quench (ASDEX-U)

- Equilibrium reconstruction using CLISTE [P McCarthy, K Lackner]
- Required for the data analysis (profiles etc.)
- Needs $E_{\text{kin}}/E_{\text{mag}}$, which needs n_{Ar}, which needs EQ...

✓ Results are very good, profiles make sense etc.
1/1 mode survives the thermal quench (ASDEX-U)

- 1/1 mode develops (due to low density?) before injection
- Becomes anharmonic and slows down
- In most cases 1/1 survives the TQ
 ➞ Core confined?
- So far no clear connection between mode parameters (A, f, etc) and REs
- Further analysis is ongoing

G. Papp
REM-2016

[with P. Zs. Pölöskei & G. I. Pokol @ BME]
Elongation effect on RE generation (COMPASS)

E. Nilsson
REM-2015

Effect of elongation on formation and confinement of REs

Circ.
\(\kappa = 1.1 \)
\#10006

\(\kappa = 1.2 \)
\#10005

\(\kappa = 1.3 \)
\#10008

\(\kappa = 1.4 \)
\#10007
Effects of the initial fuelling

\[n_e \approx 3.1 \times 10^{19} \text{ m}^{-3} \]

\[n_e \approx 2.5 \times 10^{19} \text{ m}^{-3} \]

J. Mlynar
REM-2015

Y. Peysson et al.
IEA workshop on disruptions, July 20-22 2016, PPPL, USA, #19
52716: full OH->RE conversion

- Full conversion from OH to runaway current
- Robust recipe for RE generation
- Well suited discharges for self-consistent-modeling

Y. Peysson et al.
IEA workshop on disruptions, July 20-22 2016, PPPL, USA, #20
Mitigation of RE with the ITER-Like wall (JET)

- Idea: **mitigate a fully accelerated RE beam**

- Use the same RE beam scenario

- Fire DMV2 filled with Ar/Kr/Xe at high pressures during the runaway beam

- Overall result: **no mitigation**

Derived from the Lorentz-Abraham-Dirac force under the assumption that magnetic force dominates dynamics $(F_m \gg F_E, F_{RR})$

Enters the kinetic equation as

$$\frac{\partial}{\partial p} \cdot (F_{\text{rad}}f) = -\frac{1}{p^2} \frac{\partial}{\partial p} \left(\frac{\gamma p^3(1-\xi^2)}{\tau_r} f \right) + \frac{\partial}{\partial \xi} \left(\frac{\xi(1-\xi^2)}{\gamma \tau_r} f \right)$$

with

$$\tau_r = \frac{6\pi\varepsilon_0(m_e c)^3}{\varepsilon e^4 B^2}, \quad p = \gamma v / c, \quad \xi = p_\parallel / p = \cos \theta$$

[Stahl, Hirvijoki, Decker, Embréus and Fülöp, PRL 114, 115002 (2015)]

A. Stahl, REM-2015
Bounce-averaged ALD force + implementation in LUKE

\[
\frac{df}{dt} = C_{FP}(f) + C_{KO}(f) + Q_{RF}(f) + E(f) + R(f) + T(f) + S(f)
\]

J. Decker
REM-2015

Y. Peysson et al.
IEA workshop on disruptions, July 20-22 2016, PPPL, USA, #23
Bremsstrahlung reaction force + implementation in CODE

A. Stahl, REM-2015

Parameters:
\[n_e = 1 \cdot 10^{20} \text{ m}^{-3}, \quad T_e = 10 \text{ keV}, \]
\[B = 0.5 \text{ T}, \quad E/E_c = 2, \quad Z_{eff} = 3 \]

Parameters:
\[n_e = 1 \cdot 10^{20} \text{ m}^{-3}, \quad T_e = 5 \text{ keV}, \]
\[B = 2 \text{ T}, \quad E/E_c = 3, \quad Z_{eff} = 3 \]

Conclusion: Bremsstrahlung significant when \(E \sim E_c \) and \(B \) small.

Work in progress: Study characteristics of emitted radiation
Effect of bremsstrahlung emission on runaway electrons

1) New description of RE energy losses by BE
2) Full Boltzmann description necessary

O. Embreus
REM-2016

Post-disruption scenario with successful MGI:
Simulations using CODE with \(n_e = 3 \cdot 10^{21} \text{ m}^{-3} \), \(Z_{\text{eff}} = 10 \), \(E = 2E_c \).

\[\times 10^{-6} n_e/\text{[MeV]} \]

\[\frac{dn_e}{dW} \]

\[B = 2T \]

\[B = 0 \]

\[\times \frac{1}{5} \]

\[\times \frac{1}{15} \]
p_{KO} : E_k = 1 \text{ MeV}, v/c = 0.94

Particle conserving form of avalanche process:

\[S = S_+ \left< S_+ \right> \tilde{f}_M \]
\[S_+ = n_e n_r c \frac{d}{d} \]
\[n_r + n_e = \text{const} \]

Exponential RE growth when avalanches dominate

E. Nilsson
REM-2015
Influence of toroidicity on primary and secondary RE

\[\frac{\partial n_r}{\partial t} = n_e (\gamma_D + \gamma_A) \]

\[\gamma_A = n_r \overline{\gamma_A} \]

Dreicer growth rate, \(Z_{\text{eff}} = 1 \)

Runaway rate strongly reduced due to trapped electrons!

Agrees with predictions by ARENA code [Eriksson & Helander, Comp. Phys. Comm. 154 (2003)]
Experiments show that $E/E_c > 3$ is required to generate REs

[Granetz et al., Phys of Plasmas 21 (2014)]

Experimental RE onset from Granetz’s compilation + COMPASS and Tore Supra

[Y. Peysson et al. IEA workshop on disruptions, July 20-22 2016, PPPL, USA, #28]
Near critical field – time and temperature

Time required for 1% of initial Maxwellian electrons to run away.

[Nilsson et al., Plasma Phys. and Controlled Fusion 57 (2015)]

No RE-discharge:
$T_e \sim 3 \text{ keV}$, $E/E_c \sim 2.5$, $t = 10 \text{ s}$

$a 10 \text{ s discharge is not enough for runaways to form in } E/E_c \sim 2.5 \text{ in a 3 keV plasma}$
Trapped electron runaway effect
Ware pinch effect

- Knock-on electrons emerge highly magnetized → trapping off magnetic axis
- Conservation of canonical angular momentum → trapped electron Ware pinch towards the magnetic axis

\[
\frac{dr}{dt} = - \frac{E_\phi}{B_\theta}
\]

[Ware, Phys. Rev. Letters 25 (1970)]

- Trapped electrons can pinch inwards where they untrap and run away
- Calculated by LUKE 2

Fast electron bremsstrahlung emission from RE (Tore Supra)

- HXR tomographic system
- R5X2: Synthetic diagnostic for bremsstrahlung emission

Vertical cam, 1-21 Horizontal cam, 22-59

Pulse count rate, E=50-110keV

RUNAWAY DISCHARGE:
Emission profile reproduced at the end of the current flattop

X-rays backscattered by the tokamak inner wall

E. Nilsson, REM-2015

Y. Peysson et al.
IEA workshop on disruptions, July 20-22 2016, PPPL, USA, #31
A drift-diffusion model for runaway transport in stochastic magnetic field

Clustering of particles leads to a reduced diffusion coefficient

Replacing τ_{orb} with τ_c leads to a diffusion coefficient of form

$$D_c \equiv C\frac{\sigma_{\text{orb}}^2}{2\tau_c}b^2_{\text{pert}}$$

which agrees well with numerical values.

At the edge where there are no islands, $\tau_c \approx \tau_{\text{orb}}$, and D_c reduces to the Rechester-Rosenbluth result

τ_c evaluated with orbit-following simulations. (independent from the coefficient evaluation)

Provides an alternative way to find D.

1) RE dynamics in mixed stochastic/coherent structures

2) Full topology is needed to get realistic RE transport description

K. Sarkimaki, REM-2016
The magnetic surface reconstruction in the core region confines the electrons ⇒ 6% of the initial population survives to the thermal quench.

Electrons outside the core region are completely deconfined.
The tools for self-consistent modeling of RE

- GO (tokamak simulator 0D) + CODE (2D momentum space, relativistic Fokker-Planck solver)
- METIS (tokamak simulator 1D radial) + LUKE (2D momentum space + 1D radial relativistic bounce-averaged Fokker-Planck solver)
- ITM

- METIS – LUKE link is done
- Stability of the convergence between j and $E_{||}$ to be improved (scheduled for 2016)
- Effect of RF waves on RE can be studied
RE modelling within ITM framework

Runaway growth rates benchmarked

G. Pokol
REM-2016
Conclusions

- A large amount of work has been done since the beginning of the ERP on runaway electron physics (*experimental, theoretical, modeling*)

- Good collaboration level between participants to ERP. Good connections with external labs also (*PSFC, GA, SWIP,…*).

- A very large number of publications and communications have been written in 2015 and are submitted in 2016, with oral presentations. Very active community!

- Interesting RE experiments has been performed, some particularly well suited for comparison with quantitative modeling (crucial role of diagnostics).

- Synthetic diagnostic for synchrotron radiation is available for CODE and in preparation for LUKE.

- Selfconsistent modeling of RE discharges with GO-CODE already operational. METIS-LUKE will be available in 2016 → *simulations of RE for JET*
Challenges

- Detailed RE kinetic modeling will take more than the 3 years of the ER project!
 - Analysis quantitatively the radiation synchrotron emission (angular dependence of the SR spectrum)
 - Describe the anomalous transport of RE in existing Fokker-Planck codes
 - Add bremsstrahlung reaction force in existing Fokker-Planck codes
 - Role of plasma shape
 - Effect of initial fuelling
 - Finite-width orbit effects → self-consistent Ware pinch effect
 - Effect of RF waves on disruptive RE dynamics (EC wave)
 - ...

Articles

Conference contributions:

« Reaction of runaway electron distributions to radiative Processes » A. Stahl et al., APS conference Savannah (2015) [POSTER]

« Conservative large-angle collision operator for runaway Avalanches », O. Embréus et al., APS conference Savannah (2015) [POSTER]

« Numerical calculation of ion runaway distributions », S. Newton et al., APS conference Savannah (2015) [POSTER]

Thesis report:
https://pastel.archives-ouvertes.fr/tel-01212017/

“Relativistic runaway electron simulations in 3D background” by Konsta Särkimäki PhD thesis (Aalto University, Helsinki, Finland, 2015)