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Key results in HBT-EP* 

• Direct measurements of toroidal vessel currents reveal asymmetric, oscillating 

co- and counter-Ip wall currents during kink modes and disruptions 

– Insulating breaks constrain vessel current to complete its circuit through SOL plasma 

– Currents reach ~4% of Ip during disruptions. 

 

• Ip asymmetry characteristics agree with JET results1 and ITER modeling2 

– Slope of asymmetry ΔIp/ΔMIR,IZ scales like 1/a 

 

• Wall touching kink mode (WTKM)3 and Asymmetric toroidal eddy current 

(ATEC)4 models can qualitatively explain some HBT-EP measurements, but 

each model is incomplete as formulated. 

– Both ATEC and WTKM concepts are significant for vessel currents 

• Both models also have problems explaining some of the observations 

– Each model can qualitatively explain observed plasma current asymmetries 

• Conditions for ATEC appear more restrictive overall 

[1] Gerasimov S.N. et al., Nucl. Fusion 54 073009 (2014) 

[2] Roccella R. et al., “Modelling ITER asymmetric VDEs through 

asymmetries of toroidal eddy currents” IAEA FEC [EX/P6-40] (2016) 

[3] Zakharov L.E. et al., Phys. Plasmas 19 055703 (2012) 

[4] Roccella R. et al., Nucl. Fusion 56 106010 (2016) 

* Levesque, J.P. et al., Nucl. Fusion 57 086035 (2017) 
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Outline 

• HBT-EP device overview 

– Scrape-off layer current (SOLC) diagnostics and vessel geometry 

– Discharge characteristics 

 

• Measurements during routine kink mode activity 

 

• Measurements during disruptions  

 

• Interpretation in context of WTKM and ATEC models 

 

• Upcoming simulation and experiments 
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SOL current diagnostics on HBT-EP 

Major Radius: 92 cm 

Minor Radius: 15 cm 

Plasma Current: ~15 kA 

Toroidal Field: 0.33 T 

Pulse Length: 5 - 10 ms 

Electron Temperature: ≤ 150 eV 

Typical discharge parameters 

• Isolated chamber sections 

• Jumpers between isolated vessel sections 

• Poloidal arrays of Bθ sensors 

• Grounded electrode in the SOL 
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SOL current diagnostics on HBT-EP 

• Poloidal arrays measure Ip asymmetry and current moments: 

 

 

 

 

 

 

 

 

 

 

• Jumpers across quartz breaks directly measure toroidal vessel current 

– Positive current defined as co-Ip 

– Fractional current is normalized to plasma current: 

Vertical current moment: 

Radial current moment: 

Plasma current at each φ: 

Plasma current asymmetry: 

Fractional Ip asymmetry: 

Radial moment asymmetry: 
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HFS- and LFS-limited plasmas have only ~1cm thick 

vacuum/SOL region between LCFS and magnetic sensors 

• Limiting surfaces are at 

different toroidal angles 

than the sensors 

HFS 

limited 

LFS 

limited 
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Outline 
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MHD modes during main discharge are accompanied by Ip asymmetries 

and driven vessel currents that must conduct through the SOL 

m/n = 4/1 

m/n = 2/1 

• An m/n=4/1 kink mode initiates after startup, then decays as q* decreases 

• An m/n=2/1 mode appears later at lower q* 

• SOL current features are different for each mode and diagnostic 
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• SOL currents are modulated 

by mode amplitude and phase 

– Stronger currents for larger 

mode amplitudes 

• Ip asymmetry of up to 0.5% 

• Toroidal Jumper currents are 

mostly counter-Ip (negative) 

• Grounded electrode measures 

brief current spikes 

– Positive current for collecting 

electrons 

m/n = 4/1 

For the initial 4/1 mode: 

MHD modes during main discharge are accompanied by Ip asymmetries 

and driven vessel currents that must conduct through the SOL 
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Ip asymmetry and driven vessel current behavior is consistent 

for early 4/1 modes in each discharge 

m/n = 4/1 

24 discharges 
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Ip asymmetry and driven vessel current behavior is consistent 

for early 4/1 modes in each discharge 

• Toroidal jumper currents are 

weak (~0.1% of Ip) and 

mostly counter-Ip in response 

to larger modes 

 

 

• Grounded SOL electrode 

collects largest electron 

current when δBr is maximum 

at the probe location 
 

• Each poloidal array measures 

elevated Ip when the nearby 

jumper current is counter-Ip 

24 discharges 
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Later m/n=2/1 modes have different features 

• During rotation of a strong 

transient 2/1 mode, Ip 

asymmetry does not rotate 

– Ip remains elevated on one 

side of tokamak despite 

several periods of mode 

rotation 

 

• Jumper B measures much 

stronger current than Jumper A 

throughout rotation 
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Disruptions yield large asymmetries in plasma current 

and toroidal vessel currents 

Plasma Current (kA) 

Major Radius (cm) 

Edge q 

Loop Voltage (V) 

Shot 94664 

• Asymmetric field δBθ/Bθ reaches 20% 

• Jumper currents and Ip asymmetry are ~5% of pre-disruption Ip 

• Halo current rotation is much faster than in larger tokamaks 

• Generally above 20kHz, rather then below 2kHz 
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Plasma current asymmetries scale with displacement of 

current centroid toward the vessel wall 

• Relation between ΔIp and ΔMI asymmetries agree with JET 

measurements and ITER predictions using ATEC model 

– Opposite pitch is due to which direction gives motion into the wall 
 

• Slope scales as ~1/a characteristic for each tokamak 

HBT-EP JET1 ITER2 

Slope 

0.3m-1 

59 shots 

[1] Gerasimov S.N. et al., Nucl. Fusion 54 073009 (2014) 

[2] Roccella R. et al., “Modelling ITER asymmetric VDEs through 

asymmetries of toroidal eddy currents” IAEA FEC [EX/P6-40] (2016) 



20 

Different SOL current characteristics 

at varying stages of disruptions 

1. Current spike 

– Toroidal jumpers usually measure a 

counter-Ip spike, but occasionally 

measure co-Ip spikes. 

• Co-Ip spike occurs when plasma is 

HFS-limited 

 

2. Slow Ip decay 

– Mode rotates at 10-20kHz 

– Rotation is irregular 

 

3. Fast Ip decay 

– Fast halo current rotation at ~50kHz 

– Rotation is smooth 

 

4. Symmetric vessel currents 

– Co-Ip vessel currents conduct across 

insulating breaks after mode decays 

Ip (kA) 

R0 (cm) 

q* 

Vloop (V) 

Shot 94664 

1 
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High frequency mode during fast CQ ramp accompanies the 

largest current asymmetries in HBT-EP 

• Coherent mode rotating at 

~50kHz 
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Clear phase relation exists between Ip asymmetry 

and toroidal vessel currents 
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Clear phase relation exists between Ip asymmetry 

and toroidal vessel currents 

• Local Ip is higher when nearest 

toroidal jumper has its most negative 

current 

Elevated 

Ip 

Counter-Ip 

vessel 

current 
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Jumper currents symmetrize in co-Ip direction at end 

of the current quench 

• n=1 mode decays without 

evidence of locking 

 

 

• Ip asymmetry vanishes 

 

• Jumper currents remain 

significant  

– Current must flow across SOL 

to bridge chamber sections 
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Outline 

• HBT-EP device overview 
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– Discharge characteristics 
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How do HBT-EP measurements compare to models of 

SOL/vessel currents during disruptions? 

• WTKM and ATEC models are considered 

 

• Models yield contrary predictions for the sign of strong toroidal 

vessel currents 

– WTKM predicts mostly counter-Ip currents 

– ATEC predicts mostly co-Ip currents 

 

• Disclaimers: 

– This is my personal interpretation of each model 

– Not considering other models 
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WTKM vs ATEC models for upward VDEs in JET 

WTKM 

ATEC 

• Surface current 

generated in response 

to kink will conduct 

through the vessel 

upon contact 

• Vessel eddy current 

from decaying Ip 

partially conducts 

through the plasma 

upon plasma-wall 

contact (shorting 

across tile gaps) 
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Expected currents in response to disruption kinks in HBT-EP 

Ip 

Jumper B Jumper A 

R 

φ 

High-field side 

Low-field side 

PA1 PA2 
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Expected currents in response to disruption kinks in HBT-EP 

Ip 

0 
Counter-Ip 

Jumper B Jumper A 

Zakharov L.E., Phys. Plasmas 18, 062503 (2011), 

Gerasimov S.N. et al., Nucl. Fusion 54 073009 (2014) 

Measure 

elevated Ip 

R 

φ 
WTKM 

PA1 

PA2 
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Expected currents in response to disruption kinks in HBT-EP 

Ip 

Co-Ip 

Co-Ip 

Jumper B 
Jumper A 

Measure 

elevated Ip 

R 

φ 

• Using ATEC as 

formulated for JET, 

with no plasma motion 

ATEC 

PA1 PA2 

Decreasing 
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Expected currents in response to disruption kinks in HBT-EP 

Ip 

Co-Ip 

Co-Ip 

Jumper B 
Jumper A 

Measure 

elevated Ip 

Conduction without 

strong P-W contact 

• Using ATEC as 

formulated for JET, 

with no plasma motion 

R 

φ 

PA1 PA2 

ATEC 

Decreasing 
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Expected currents in response to disruption kinks in HBT-EP 

Ip 

Co-Ip 

Co-Ip 

Jumper B 
Jumper A 

Measure 

elevated Ip 

• Using ATEC as 

formulated for JET, 

with no plasma motion 

• Need to allow significant 

current through the SOL far 

from the “wetting zone” 

• Thick conducting region 

R 

φ 
ATEC 

Decreasing 
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ATEC current responsible for elevated Ip measurement needs 

to flow in a ~1cm thick SOL region 

• No bulk conducting 

materials exist between 

poloidal array sensors 

and LCFS 

– Only 64µm thick SS 

shimstock shielding in 

front of sensors 
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Evaluation of WTKM model 

• Local Counter-Ip vessel current agrees with elevated Ip measurement 

• Large Co-Ip vessel current is not predicted 

– Co-Ip “Evans” current is allowed, but should not be strong 

• Source-limited from plasma dissipation1:  

– Co-Ip wall current should not extend to opposite side of vessel 

– Consider allowing very broad contact area and strong co-Ip halo current 

WTKM 

[1] Gerasimov S.N. et al., Nucl. Fusion 55 113006 (2015) 
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Evaluation of ATEC model 

• Measured jumper currents are co-Ip for most of the disruption duration 

• ATEC Predicts co-Ip jumper current where Ip is elevated 

– Current in local jumper would be lower than in the other jumper, but both still co-Ip 

• Neglecting plasma motion, there should be no counter-Ip jumper current 

– Allowing counter-Ip currents induced by plasma motion could overpower co-Ip current 

from Ip decay 

• Strong co-Ip current must flow in a relatively thin SOL region in front of poloidal 

array sensors 

ATEC 
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ATEC concept of toroidal eddy current flowing through SOL 

could explain symmetric current at end of CQ 

• Current passing through jumpers must 

conduct to neighboring vessel sections 

through the SOL 

ATEC 
Jumper B Jumper A 
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Outline 

• HBT-EP device overview 

– Scrape-off layer current (SOLC) diagnostics and vessel geometry 

– Discharge characteristics 
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Upcoming simulation and experiments 

• VALEN/IVB modeling  

– Compare direct source/sink currents versus vessel currents due to 

rotating kink mode eddy currents 

• ATEC calculations for HBT-EP 

• Upgraded SOLC diagnostics for further experiments: 
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Summary 

• Direct measurements of toroidal vessel currents reveal asymmetric, oscillating 

co- and counter-Ip wall currents during kink modes and disruptions 

– Insulating breaks constrain vessel current to complete its circuit through SOL plasma 

– Currents reach ~4% of Ip during disruptions. 

 

• Ip asymmetry characteristics agree with JET results1 and ITER modeling2 

– Slope of asymmetry ΔIp/ΔMIR,IZ scales like 1/a 

 

• WTKM3 and ATEC4 models can qualitatively explain some HBT-EP 

measurements, but each model has deficiencies as formulated. 

– Both ATEC and WTKM concepts are significant for vessel currents 

• Both models also have problems explaining some of the observations 

– Each model can qualitatively explain observed plasma current asymmetries 

• Conditions for ATEC appear more restrictive overall 

 

• Upcoming experiments will improve validation of disruption current models 

[1] Gerasimov S.N. et al., Nucl. Fusion 54 073009 (2014) 

[2] Roccella R. et al., “Modelling ITER asymmetric VDEs through 

asymmetries of toroidal eddy currents” IAEA FEC [EX/P6-40] (2016) 

[3] Zakharov L.E. et al., Phys. Plasmas 19 055703 (2012) 

[4] Roccella R. et al., Nucl. Fusion 56 106010 (2016) 

* Levesque, J.P. et al., Nucl. Fusion 57 086035 (2017) 


