Nonlinear Computations of Vertical Displacement Events with Toroidal Asymmetry

Carl Sovinec and Kyle Bunkers *University of Wisconsin-Madison*

Theory and Simulation of Disruptions Workshop
July 17-19, 2017

Princeton Plasma Physics Lab

Outline

- Introduction -- objectives
- Modeling
- Linear stability of initial equilibria
- Nonlinear evolution
 - Development of kink instability
 - Effects from varying temperature boundary conditions
 - Assessment of simplifications
- Initialization with fitted equilibria
- Conclusions and future work

Introduction: There are at least two distinct objectives for VDE modeling.

1. Characterization of disruptive transients

- Investigate interactions among multiple physical processes: MHD, external electromagnetics, plasma and impurity transport, plasma-surface interaction, and radiation.
- This objective emphasizes comprehensive modeling.

2. Practical modeling for addressing specific questions

- Assessing wall forces is an example.
- If validated, faster reduced modeling is preferable.

Our long-term aim is the first objective, but we consider approximations that may be useful for the second.

Model: Our computations presently use visco-resistive MHD with fluid closures.

• Fluid-based models describe the evolution of low-order moments of particle distributions and low-frequency electromagnetics.

$$\frac{\partial n}{\partial t} + \nabla \cdot (n\mathbf{V}) = \nabla \cdot \left(D_n \nabla n - D_h \nabla \nabla^2 n\right)$$
 particle continuity with artificial diffusion
$$mn \left(\frac{\partial}{\partial t} + \mathbf{V} \cdot \nabla\right) \mathbf{V} = \mathbf{J} \times \mathbf{B} - \nabla (2nT) - \nabla \cdot \mathbf{\Pi} - \mathbf{v}_n m n \mathbf{V}$$
 momentum density with optional drag
$$\frac{n}{\gamma - 1} \left(\frac{\partial}{\partial t} T + \mathbf{V} \cdot \nabla T\right) = -nT \nabla \cdot \mathbf{V} - \nabla \cdot \mathbf{q}$$
 temperature evolution
$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times (\eta \mathbf{J} - \mathbf{V} \times \mathbf{B})$$
 Faraday's law & MHD Ohm's
$$\mu_0 \mathbf{J} = \nabla \times \mathbf{B}$$
 Ampere's law divergence constraint

The NIMROD code (https://nimrodteam.org) is used to solve linear and nonlinear versions of this system.

Closure relations approximate transport effects.

- Normalized equations are used in this application.
 - $\tau_A = R_0^2 / F_{open} \approx 1; \quad \mu_0 \rightarrow 1, \quad n_0 \rightarrow 1$
 - $a \approx 0.8$; $R_0 = 1.6$
- Magnetic diffusivity depends on temperature.
 - $\eta_0/\mu_0 = 1 \times 10^{-6}$
 - $\eta(T) = \min \left[\eta_0 \left(T_0 / T \right)^{3/2}, 1 \right]$
- Thermal conduction and viscous stress are anisotropic with fixed coefficients.
 - $\mathbf{q} = -n \left[\left(\chi_{\parallel} \chi_{iso} \right) \hat{\mathbf{b}} \hat{\mathbf{b}} + \chi_{iso} \mathbf{I} \right] \cdot \nabla T$; $\chi_{\parallel} = 7.5 \times 10^{-2}$, $\chi_{iso} = 7.5 \times 10^{-6}$
 - $\underline{\Pi} = v_{\parallel} mn \left(\underline{\mathbf{I}} 3\hat{\mathbf{b}}\hat{\mathbf{b}} \right) \hat{\mathbf{b}} \cdot \underline{\mathbf{W}} \cdot \hat{\mathbf{b}} v_{iso} mn \underline{\mathbf{W}} ; \quad v_{\parallel} = 5 \times 10^{-2} , \quad v_{iso} = 5 \times 10^{-5}$ $\underline{\mathbf{W}} = \nabla \mathbf{V} + \nabla \mathbf{V}^T \frac{2}{3} \underline{\mathbf{I}} \nabla \cdot \mathbf{V}$
- Artificial diffusivities are intended to be small.

•
$$D_n = 5 \times 10^{-6}$$
, $D_h = 1 \times 10^{-10}$

The computations presented here use the following boundary conditions.

- Normal component of flow-velocity is **E**_{wall}**×B** drift.
 - Choice is based on previously described axisymmetric tests.
 - **E**_{wall} is from resistive diffusion through the wall.
- Density at the wall is fixed: $n_{wall} = 0.1 n_0$
 - Diffusion allows particles to move through the wall.
- Resistive diffusion through the wall is at an intermediate time-scale.
 - $v_{wall} = \eta_0 / \mu_0 \Delta x_{wall} = 1 \times 10^{-3}$
 - An outer vacuum region is surrounded by a conducting wall.
 - Small (10⁻⁷) magnetic field errors in n = 1 and n = 2 are applied in nonlinear computations.
- Most computations use a Dirichlet condition on temperature.
 - T_{wall} is fixed at a value $\leq T_0/10^4$ for these cases.
 - For a comparative test, one case uses insulating conditions.

Initial conditions are up-down symmetric, diverted equilibria.

- Two equilibrium states are considered.
 - Primary difference is q.
 - Both have $\beta_0 \cong 1\%$.

Contours of poloidal flux and pressure for Eq. A (left) and Eq. B (right).

 VDEs are initiated by removing current from the upper divertor coil (outside wall).

Linear Results: Linear computations evolve perturbations in the initial (static) equilibria.

• With the large edge resistivity and no flow, edge modes are unstable.

Growth rates computed for the initial equilibria with conducting wall.

n	$\gamma au_{\!\scriptscriptstyle A}$, Eq. A	$\gamma au_{\!\scriptscriptstyle A}$, Eq. B
1	2.5×10 ⁻³	1.7×10 ⁻²
2	1.4×10 ⁻³	-
3	2.6×10 ⁻³	1.8×10 ⁻³
4	3.4×10 ⁻³	-

• Low-*n* growth rates increase only somewhat with the resistive wall with $v_{wall} = 1 \times 10^{-3}$.

n = 3 mode of Eq. Ahas ballooningcharacter. [Pressureis shown.]

n = 1 mode of Eq. Bis concentrated onthe inboard side.

Nonlinear Results: With vertical displacement, n = 1 grows faster than the linear prediction.

• For Eq. A (high-q), n = 1 growth rate rapidly increases to $\gamma \tau_A \approx 2.5 \times 10^{-2}$.

Evolution of kinetic energy fluctuations from low resolution $(0 \le n \le 2)$ case starting from Eq. A.

n = 1 pressure contours at t = 160 primarily shows m = 4.

At t = 1110, the mode is m = 3.

Robust instability is a consequence of edge profile changes from wall contact.

- Loss of edge RB_ϕ and pressure enhances edge current.
- The (3,1) mode develops while the (4,1) is suppressed with decreasing q(a).

A strong current layer develops at the edge of the closed flux. [Plot shows $\langle \lambda \rangle = \langle \mu_0 J.B/B^2 \rangle$ at t = 1110.]

With increasing displacement, edge q is reduced, and edge- $\langle \lambda \rangle$ creates reversed shear.

Similar evolution occurs with increased toroidal resolution.

- Another computation adds Fourier components $3 \le n \le 5$ to the previous Eq.-A computation at t = 740.
- The evolution of low-n components is not altered appreciably.
- Both computations eventually terminate due to inadequate resolution.

Overlay of kinetic fluctuation energies from the two Eq.-A computations.

Contours of pressure at ϕ = 0, t=1260 indicate 3D distortion.

Nonlinear evolution from Eq. B (lower q) is faster.

- A higher-resolution Eq.-B computation uses 0≤n≤10 from the start.
- Transition from (4,1) to (3,1) occurs without hesitation.

Evolution of kinetic fluctuation energies shows robust growth throughout.

Isosurfaces of λ = -0.085 (mustard) and λ = +0.8 (brown) at t = 519. The negative region opposes the direction of plasma current.

The mode imposes toroidal variation in the conductive current density along the 'divertor' surface.

- The results show O(1) toroidal variation in the surface-normal component of current density.
- The spatial variation is primarily n = 1, but larger-n harmonics are also evident.

Contours of J_z just above the lower surface at t = 519.

Through the early phases, evolution of global parameters is similar to axisymmetric results.

Evolution of plasma current for 3D and axisymmetric Eq.-B computations.

Evolution of thermal energy for the two computations.

- Seemingly significant distortions of the pedestal-region plasma are slow to impact overall evolution.
- This is also true for Eq.-A computations.

Assessment of simplifications: Several simplifications have been considered.

- 1. Reduced resolution of toroidal coordinate
 - Limit Fourier expansion and/or use filtering.
 - The highly nonlinear phase needs fine resolution.
- 2. Using the drag term to limit the range of dynamics
 - This is analogous to tokamak-MHD.
 - The peeling modes observed here grow too quickly.
- 3. Approximating $n(\mathbf{x},t)$ as $\langle n(\mathbf{x},t)\rangle$ in dissipation coefficients and inertia
 - $\langle n \rangle = \int_0^{2\pi} n \, d\phi / 2\pi$
 - $n(\mathbf{x},t)$ is always evolved in 3D for pressure, $n(\mathbf{x},t)T(\mathbf{x},t)$.
 - Other nonlinearities are simplified with $\langle n(\mathbf{x},t) \rangle$.
 - Artificial energy loss/gain may occur.

Axisymmetric computations from Eq. A indicate sensitivity to heat flux modeling at the wall.

- The computation with Dirichlet conditions on T loses approximately 20% of its thermal energy over the first 1400 τ_A .
- The insulating condition slows the evolution of I_p .

Evolution of plasma current is sensitive to boundary conditions on *T*.

Contours of T with J vectors overlaid at t = 1410 with Dirichlet (left) and insulating (right).

Initialization from fitted equilibria: We have developed a new procedure for our VDE computations.

- Equilibria for VDE computations with resistive walls need consistent flux values from external coils and internal currents.
- We now use EFIT data for the plasma current density.
- Wall flux in fixed-boundary solves is from coil currents and the plasma current.
- NIMEQ [Howell, CPC 185, 1415] is used to generate the equilibrium on the NIMROD VDE mesh.

Recomputed equilibrium for NIMROD (left) and EFIT of C-MOD 1160511013 (right), courtesy of Alex Tinguely.

Conclusions

- Our 3D computations point to edge peeling/kink.
 - In addition to open-field halo, a strong edge current develops for force balance.
 - This current layer destabilizes the edge region.
- The comparison of axisymmetric results emphasizes edge and plasma-surface modeling.
 - Dirichlet and insulating conditions represent limits.
 - More detailed modeling is needed.
- Simplifications have limited benefit for this type of modeling.