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THE BIG PICTURE

One of the main long term goals of the ORNL disruptions
modeling and simulation team is the development of KORC
(Kinetic Orbit Runaway Code): an integrated modeling
capability for predictive studies of RE dynamics, generation,
avoidance, and mitigation in ITER plasmas.

KORC is designed as a modular code, with each module
adding further physics and/or synthetic diagnostics.

Particle tracking module: an accurate and efficient RE orbit
integrator for general electric and magnetic fields in the
presence of radiation damping.

» KORC-GC: Guiding center orbit model

» KORC-FO: Full orbit (6-dimensional) model.
Synchrotron radiation synthetic diagnostic module: an
accurate, efficient, and realistic diagnostic for radiation
emission patterns and spectra taking into consideration full
orbit and camera geometry effects.



KORC (Kinetic Orbit Runaway Code)

Collisions module: a Monte-Carlo based module for collisions
with background plasma and impurities, and knock-on
collisions.

Radiative plasma cooling module: a continuum solver for a
fluid model of impurity-induced plasma cooling and thermal
quench.

Conductive plasma cooling module: a Lagrangian-Green's
function based solver for strongly anisotropic heat conduction
in chaotic magnetic field during thermal quench.

Electric field module: a continuum solver for the selfconsistent
evolution of the electric field.



KORC (Kinetic Orbit Runaway Code)

Bremsstrahlung radiation synthetic diagnostic module: an
accurate, efficient, and realistic model of bremsstrahlung
radiation taking into consideration full geometric effects.
MHD activity module: to incorporate MHD self-consistent
effects.

The methodology of the incorporation of the modules is
guided by physics needs, and the implementation is guided by
numerical methods accuracy and computing performance.
Each module targets a specific physics problem with the
expectation of getting new physics insights into the problem.
Validation against experiments (DIII-D in particular) is a key
element.



RECENT RESULTS

Full-orbit effects on RE dynamics [reported in last year’s
workshop].

L. Carbajal, D. del-Castillo-Negrete, D. Spong, S. Seal, and L.
Baylor, Phys. of Plasmas 24, 042512 (2017).

Synchrotron radiation: full-orbit effects and synthetic
diagnostic [this talk].

L. Carbajal and D. del-Castillo-Negrete, Submitted to PPCF (2017).
arXiv:1707.03941.

Backward Monte-Carlo method [this talk].
G. Zhang and D. del-Castillo-Negrete, Submitted to Phys. of
Plasmas (2017).

RE dynamics with pellet suppression and instabilities (Alfven
modes and whistler waves) [Don Spong presentation].



KORC PARTICLE TRACKING MODULES WITH RADIATION
DAMPING AND COLLISIONS DEVELOPED AND
OPERATIONAL
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» Even without collisions, RE exhibit pitch angle dispersion

ORBIT EFFECTS ON PITCH ANGLE DYNAMICS
Collisionless pitch angle dispersion

> CPD results from full-orbit effects in spatially dependent
magnetic fields

» CPD, which is ignored or treated approximately in reduced
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ELECTRIC FIELD AND RADIATION DAMPING
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Summary of results of simulations of runaway electrons including
synchrotron energy losses and a toroidal electric field.



PITCH ANGLE EVOLUTION WITH COLLISIONS

DII-D like magnetic field.
t =10ms
E=1V/m, & =30MeV, 6y =5° 10°, 15°, and 20°.
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FULL ORBIT EFFECTS ON SYNCHROTRON RADIATION

» The total radiation power Pt = 67ri(2)c374‘/4“2 depends on the

geometry of the orbit through the curvature

» Approximating k assuming 6 and/or B constant (as done in
reduced models) can introduce significant errors in Pt
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FULL ORBIT EFFECTS ON SYNCHROTRON RADIATION
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SYNCHROTRON RADIATION ROUTINELY MEASURED TO
INFER RE INFORMATION

This motivates the need of accurate synthetic diagnostics that
incorporate full-orbit effects

Visible camera in EAST [Y. Shi et al. Visible camera in C-Mod [A.
Rev. Sci. Instrum. 81, 033506 (2010)]. Tinguely et al. APS DPP 2016].

(e)
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R (m)
IR camera in TEXTOR [K. Wongrach Visible camera in DIII-D [J. H. Yu
etal. Nucl. Fusion 54, 043011 (2014)]. et al. PoP 20, 042113 (2013)]. &(




SYNCHROTRON SPATIAL EMISSION

» The modeling of measured 2D synchrotron images requires
the computation of the power spectra as function of the
observation vector i

B = binormal

~
»

~
B observation vector

T = tangent

K N = normal
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KORC SYNCHROTRON EMISSION SYNTHETIC DIAGNOSTIC

The recently developed diagnostic in KORC computes P (A, 1, x)
using the full-orbit information of large ensembles of RE
incorporating the basic camera geometry

* We calculate the SR spatial distribution
on the poloidal plane, as well as the SR
as seen by a camera placed at the outer
midplane plasma.

»  We use two models for the angular
distribution of the SR for computing the
radiation seen by a camera:

I.  We use the full angular and spectral
distribution Pr(\, v, x) .

Il. We assume that the radiation intensity is
given by Pg(A), and is emitted
isotropically within a circular cone
(natural opening angle) [K. Wongrach et
al. Nucl. Fusion 54, 043011 (2014)].

For each pixel we measure: (Pr(, ¥, x), Number of RE)"®
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SPATIAL DISTRIBUTION OF RADIATION POWER IN THE
POLOIDAL PLANE
Mono-energetic and mono-pitch initial RE distribution function

E = 30MeV 6 = 10°
Pr (W)

x10°

Z-axis

Total synchrotron radiated power. b) Power integrated over
A € (102,10*)nm. c) Spatial distribution of RE.



SPATIAL DISTRIBUTION OF RADIATION POWER AS
MEASURED BY THE CAMERA
Mono-energetic and mono-pitch initial RE distribution function

E = 30MeV and 6 =59, 10°, 20°.
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A transition from a crescent shape to an ellipse shape is observed as the

pitch angle increases.



SYNCHROTRON SPECTRA AS MEASURED BY THE
CAMERA
Mono-energetic and mono-pitch initial RE distribution function

E =30MeV and 6 = 5°, 10°, 200.
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SYNCHROTRON SPECTRA ON POLOIDAL PLANE
Avalanche type initial RE distribution function
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Left panels: Orbit-induced pitch angel dispersion modifies the RE pdf.
(a) Model distribution; (b) Modified distribution due to full-orbit effects.
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Right panels: Not including full-orbit effects underestimates the spectra.
(a) Zeff = 1, (b) Zeff = 10.



SYNCHROTRON SPECTRA AS MEASURED BY THE
CAMERA
Avalanche type RE distribution function

o b Bp
fm(pﬁr/)f%cznexp< c. 27](1 %)

Left panels: Orbit-induced pitch angel dispersion modifies the RE pdf.
(a) Model distribution; (b) Modified distribution due to full-orbit effects.
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BACKWARD MONTE CARLO METHOD

To illustrate the method we will use the simple 2-D Fokker-Planck

model: of
=F+C+R,
ot

» Electric field acceleration:

» Collisions operator:

- hploAn e g

with ve = (Z +1) /1 + p2/p°.

» Synchrotron radiation reaction force:

R={ - - o Tea-ar| ]



STOCHASTIC DIFFERENTIAL EQUATION MODEL

0 =pitch angle, £ = cos @
p = magnitud of relativistic momentum.

dpt - bl(phgt) dtv
d&e = ba(pr, &) dt + o(pe, §r) dWk,

where ) )

h=E-2(1-¢) - :2”,
2 2
E0-@) ca-9)
1% T

o=1/vc(1—£2), T =17r/Tc

7. = mec/(Ece) and 7, = 6megm3c3/(e*B?).

W; is the standard Wiener process (Brownian motion) according to
which the increments dW; are drawn from a Gaussian distribution
with zero mean and variance equal to dt.

b, =




PROBLEM FORMULATION

» What is the probability, Prg, that an electron with coordinates
(p, &) will runaway at, or before, a prescribed time?

» More formally: for (t,p,&) € [0, T] X [Pmin, P«] X [—1,1],
where pmin is a lower momentum boundary, Prg(t, p,§), is
defined as the probability that an electron located at (p, ) at
to = 0 will acquire a momentum p, on, or before, t > 0.

Given f(t, pt, &t | p, &),

Pre = E[x(pt, &) [ po = p, S0 = &] = /R? x(pe, &) F(t, pe. &e | P, €) dpr d;

where
17 if pt > P
0, otherwise,

x(pt,&t) = {

indicates if a realization (p;, ;) of the SDEs is a runaway path.



DIRECT AND ADJOINT METHOD TO COMPUTE Prg

Direct, “brute-force”, MC method: simulate a very large
number of paths, (pt, &), by solving the SDEs with initial
condition (po, o) = (p, &), and use the paths to approximate
the expectation.

Simple but very inefficient due to the slow convergence of the
MC sampling, and the need to generate new set of paths at
each point in phase space.

Adjoint method [Liu, et al, 2016, 2017] get

P = PRE(T_ t, P7§) for (ta p,€) S [07 T] x [pmimp*] X [_17 1]
by solving the terminal value problem

oP 8P aP o® 9*P

P(T, p,é) = x(p,§),



BACKWARD MONTE CARLO (BMC) METHOD

The key idea of the BMC method is to compute P(t, p,§) directly
from the Feynman-Kac formula giving the probability that a
particle at (p, &) at time ¢, will runaway at a time < T

P(t,p,&) = Elx(p7,&1) | Pe = P& = €]

where x(p7,¢1) = P(T, pT,£7).
» Introduce a uniform partition of the time interval [0, T],

T={0=ty<ty<---<ty=T},
» Within the time interval [t,, th11],
P(tn, p, &) = E [P(tat1, Ptyiys Etnr) | Pt = Py 61, = €] -
> For small At =t,11 —t,

Ptnn = Pt, + bi(pe,, &) At
é-t,H,l - ft,, + b2(ptn7 gtn) At + U(ptn7 gtn) AW’



BACKWARD MONTE CARLO (BMC) METHOD

Within (t,, tp+1), the expectation can be approximated as

_1x%
e 2At

V2m At

That is, the computation of P(t,, p,§) knowing P(t,41,p,§) is
reduced to the evaluation of an integral that can be efficiently
computed using the Gauss-Hermite quadrature rule

P(tn, p,&) = / P (tnt1, p+ b1At,§ + oAt 4 0x) dx,
R

tmpvg) ZWm tn+17 a m )a (1)

where M = number of quadrature points, w,, = weights,
={+ ba(p,§)At + o(p,§)V2AL gm,

and {gm}M_, is the standard Gauss-Hermite abscissa.



COMPARISON BETWEEN BMC AND DIRECT MC
Pitch angle § = 10° and T = 1.6.

Runaway prgbability at 0 = 10“A
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SCALING OF BMC METHOD RELATIVE ERROR
(p,0) = (0.7,10°), (0.7,45°), (0.7,80°) and T = 1.6.
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-" Prg = 0.9,

STEADY STATE (TIME ASYMPTOTIC)
PROBABILITY OF RUNAWAY
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EXPECTED RUNAWAY TIME
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DEPENDENCE OF RESULTS ON RUNAWAY BOUNDARY p*

a) & (c) Asymptotic Prg for p, = 6 and p, =2

b) & (d) Expected runaway time for p, =6 and p, =2

e) & (f) Expected loss time for p, = 6 and p, =2

g) Mean and 90% confidence interval of loss time for § = 10°



PRODUCTION RATE

NRE

)= / dp/ dE F(p.€)Pre(t, p.€).

For a Maxwellian distribution

D ics of pr ion rate, § = 0.3 Equilibrium p ion rate, § = 0.3
P 10° A
12r i Z=5
i cpe=27=1, E 10,21
Lol i — AR A & 08
] H 2
8 i g
c 8fi c
o H k=]
k3] H k]
ERE 2107
<} H <
o 4 : o
i
2r: /
:N 10
) 3
0 1 2 3 4 5 6 7 8 2 25 3 35 45 5 55 6
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CONCLUSIONS

The serious threat posed by disruptions in general, and
runaway electrons in particular, to ITER calls for the
development of advanced modeling and simulation efforts.

Reduced models need to be complemented by detailed
quantitative modeling that do not rely on restrictive
assumptions.

Of particular interest is the incorporation of space-dependent
geometric effect.

The ORNL program target these efforts, focussing on the
development of KORC (Kinetic Orbit Runaway electrons
Code), and backward Monte-Carlo methods.



CONCLUSIONS

KORC is designed as a modular code, with each module
adding different physics and diagnostics.

Current modules include full-orbit relativistic integrator for RE
in the presence of general 3-D electric and magnetic
(integrable or chaotic) fields with radiation damping and
collisions.

In parallel to the full-orbit module, we have also developed a
guiding center relativistic integrator for RE (KORC-GC).

Most recently we have added a synchrotron synthetic
diagnostic.



CONCLUSIONS

» Orbit effects on synchrotron radiation (SR):

» Collisionless (orbit-induced) pitch angle scattering has a direct
effect on the RE distribution function and thus on SR.

» Orbit-averaged 2-D phase space models underestimate SR
power and shift the spectra.

» SR synthetic diagnostic:

» Incorporates full-orbit information, camera geometry, and
full-angular dependence of radiation

» SR distribution on “camera plane” dependent on angular
distribution of radiation and not trivially related to distribution
on poloidal plane.

» Oversimplification of the angular distribution of SR
overestimates the intensity of the radiation as measured by a
camera.



CONCLUSIONS

» Backward Monte Carlo Method:

» Based on the direct solution of time-discretized Feynman-Kac
formula using Gauss-Hermite quadrature methods.

» Accurate, efficient, and unconditional stable method.

» Used to compute the time-dependent probability of runaway,
expected runaway time, expected loss time, and production
rate.

» Extension to high-dimensional cases (i.e., beyond 2-D phase
space) not a significant challenge exploiting sparse quadrature
rules.

» Modeling and simulation of impurity-based RE
suppression: [Don Spong presentation].



