Full-orbit and backward Monte Carlo simulation

 of runaway electronsD. del-Castillo-Negrete
L. Carbajal
G. Zhang
D.A. Spong
L.R. Baylor
S.K. Seal

Oak Ridge National Laboratory

Theory and simulations of Disruptions Workshop

PPPL
July 17-19, 2017

* OAK RIDGE

National Laboratory

THE BIG PICTURE

- One of the main long term goals of the ORNL disruptions modeling and simulation team is the development of KORC (Kinetic Orbit Runaway Code): an integrated modeling capability for predictive studies of RE dynamics, generation, avoidance, and mitigation in ITER plasmas.
- KORC is designed as a modular code, with each module adding further physics and/or synthetic diagnostics.
- Particle tracking module: an accurate and efficient RE orbit integrator for general electric and magnetic fields in the presence of radiation damping.
- KORC-GC: Guiding center orbit model
- KORC-FO: Full orbit (6-dimensional) model.
- Synchrotron radiation synthetic diagnostic module: an accurate, efficient, and realistic diagnostic for radiation emission patterns and spectra taking into consideration full orbit and camera geometry effects.

KORC (Kinetic Orbit Runaway Code)

- Collisions module: a Monte-Carlo based module for collisions with background plasma and impurities, and knock-on collisions.
- Radiative plasma cooling module: a continuum solver for a fluid model of impurity-induced plasma cooling and thermal quench.
- Conductive plasma cooling module: a Lagrangian-Green's function based solver for strongly anisotropic heat conduction in chaotic magnetic field during thermal quench.
- Electric field module: a continuum solver for the selfconsistent evolution of the electric field.

KORC (Kinetic Orbit Runaway Code)

- Bremsstrahlung radiation synthetic diagnostic module: an accurate, efficient, and realistic model of bremsstrahlung radiation taking into consideration full geometric effects.
- MHD activity module: to incorporate MHD self-consistent effects.
- The methodology of the incorporation of the modules is guided by physics needs, and the implementation is guided by numerical methods accuracy and computing performance.
- Each module targets a specific physics problem with the expectation of getting new physics insights into the problem.
- Validation against experiments (DIII-D in particular) is a key element.

RECENT RESULTS

- Full-orbit effects on RE dynamics [reported in last year's workshop].
L. Carbajal, D. del-Castillo-Negrete, D. Spong, S. Seal, and L. Baylor, Phys. of Plasmas 24, 042512 (2017).
- Synchrotron radiation: full-orbit effects and synthetic diagnostic [this talk].
L. Carbajal and D. del-Castillo-Negrete, Submitted to PPCF (2017). arXiv:1707.03941.
- Backward Monte-Carlo method [this talk]. G. Zhang and D. del-Castillo-Negrete, Submitted to Phys. of Plasmas (2017).
- RE dynamics with pellet suppression and instabilities (Alfven modes and whistler waves) [Don Spong presentation].

KORC PARTICLE TRACKING MODULES WITH RADIATION DAMPING AND COLLISIONS DEVELOPED AND OPERATIONAL

Guiding center orbit model

Trapped/passing orbits in ITER with 3D VMEC with field ripple and TBM perturbations

Full orbit model

Trapped/passing orbits in DIII-D with JFIT fields

ORBIT EFFECTS ON PITCH ANGLE DYNAMICS

Collisionless pitch angle dispersion

- Even without collisions, RE exhibit pitch angle dispersion
- CPD results from full-orbit effects in spatially dependent magnetic fields
- CPD, which is ignored or treated approximately in reduced models, has a significant impact on synchrotron radiation

ELECTRIC FIELD AND RADIATION DAMPING

Summary of results of simulations of runaway electrons including synchrotron energy losses and a toroidal electric field,

PITCH ANGLE EVOLUTION WITH COLLISIONS

DIII-D like magnetic field.
$t=10 \mathrm{~ms}$
$E=1 \mathrm{~V} / \mathrm{m}, \quad \mathcal{E}_{0}=30 \mathrm{MeV}, \theta_{0}=5^{\circ}, 10^{\circ}, 15^{\circ}$, and 20°.

-o-o- No collisions no SR no E

- With collisions, no SR , and E
-- With collisions, SR, and E

FULL ORBIT EFFECTS ON SYNCHROTRON RADIATION

- The total radiation power $P_{T}=\frac{e^{2}}{6 \pi \epsilon_{0} c^{3}} \gamma^{4} v^{4} \kappa^{2}$ depends on the geometry of the orbit through the curvature
- Approximating κ assuming θ and/or B constant (as done in reduced models) can introduce significant errors in P_{T}

FULL ORBIT EFFECTS ON SYNCHROTRON RADIATION

$P(\lambda)=\frac{4 \pi}{\sqrt{3}} c e^{2}\left(\frac{m c^{2}}{\mathcal{E}}\right)^{2} \frac{1}{\lambda} \int_{\lambda_{c} / \lambda}^{\infty} K_{5 / 3}(\eta) d \eta \quad \lambda_{c}=\frac{4 \pi}{3 \kappa}\left(\frac{m c^{2}}{\mathcal{E}}\right)^{2}$
Ignoring orbit dependence of κ can lead to inaccuracies in $P(\lambda)$

$\mathcal{E}=40 \mathrm{MeV} ; \theta_{0}=20^{\circ}$ and $\theta_{0}=30^{\circ}$.

SYNCHROTRON RADIATION ROUTINELY MEASURED TO INFER RE INFORMATION

This motivates the need of accurate synthetic diagnostics that incorporate full-orbit effects

Visible camera in EAST [Y. Shi et al. Rev. Sci. Instrum. 81, 033506 (2010)].

IR camera in TEXTOR [K. Wongrach et al. Nucl. Fusion 54, 043011 (2014)].

Visible camera in C-Mod [A. Tinguely et al. APS DPP 2016].

Visible camera in DIII-D [J. H. Yu et al. PoP 20, 042113 (2013)].

SYNCHROTRON SPATIAL EMISSION

- The modeling of measured 2D synchrotron images requires the computation of the power spectra as function of the observation vector $\hat{\mathbf{n}}$

$$
\begin{aligned}
P(\lambda, \psi, \chi) & =-\frac{4 \pi c e^{2}}{\sqrt{3} \lambda^{4} \kappa}\left(\frac{1}{\gamma^{2}}+\psi^{2}\right)^{2}\left[\frac{\gamma^{2} \psi^{2}}{1+\gamma^{2} \psi^{2}} K_{1 / 3}(\zeta) \cos \Omega-\right. \\
& \left.-\frac{1}{2} K_{1 / 3}(\zeta)\left(1+z^{2}\right) \cos \Omega+K_{2 / 3}(\zeta) z \sin \Omega\right]
\end{aligned}
$$

where

$$
\zeta=\frac{2 \pi}{3 \lambda \kappa}\left(\frac{1}{\gamma^{2}}+\psi^{2}\right)^{3 / 2}, \quad z=\frac{\gamma \chi}{\sqrt{1+\gamma^{2} \psi^{2}}}, \quad \Omega=\frac{3}{2} \zeta\left(z+\frac{1}{3} z^{3}\right)
$$

KORC SYNCHROTRON EMISSION SYNTHETIC DIAGNOSTIC

The recently developed diagnostic in KORC computes $P(\lambda, \psi, \chi)$ using the full-orbit information of large ensembles of RE incorporating the basic camera geometry

- We calculate the SR spatial distribution on the poloidal plane, as well as the SR as seen by a camera placed at the outer midplane plasma.
- We use two models for the angular distribution of the SR for computing the radiation seen by a camera:
I. We use the full angular and spectral distribution $P_{R}(\lambda, \psi, \chi)$.
II. We assume that the radiation intensity is given by $P_{R}(\lambda)$, and is emitted isotropically within a circular cone (natural opening angle) $[\mathrm{K}$. Wongrach et al. Nucl. Fusion 54, 043011 (2014)].

SPATIAL DISTRIBUTION OF RADIATION POWER IN THE POLOIDAL PLANE

Mono-energetic and mono-pitch initial RE distribution function

$$
E=30 \mathrm{Me} V_{P_{T}(\mathbb{W})} \theta=10^{0}
$$

a)

Total synchrotron radiated power. b) Power integrated over $\lambda \in\left(10^{2}, 10^{4}\right) \mathrm{nm}$. c) Spatial distribution of RE.

SPATIAL DISTRIBUTION OF RADIATION POWER AS MEASURED BY THE CAMERA

Mono-energetic and mono-pitch initial RE distribution function
$E=30 \mathrm{MeV}$ and $\theta=5^{\circ}, 10^{\circ}, 20^{\circ}$.

A transition from a crescent shape to an ellipse shape is observed as the pitch angle increases.

SYNCHROTRON SPECTRA AS MEASURED BY THE

CAMERA

Mono-energetic and mono-pitch initial RE distribution function $E=30 \mathrm{MeV}$ and $\theta=5^{0}, 10^{\circ}, 20^{\circ}$.

Oversimplification of the angular dependence overestimates the spectra and shifts the maximum.

SYNCHROTRON SPECTRA ON POLOIDAL PLANE

 Avalanche type initial RE distribution function$$
f_{R E}(p, \eta)=\frac{\hat{E} p}{2 \pi C_{z} \eta} \exp \left(-\frac{p \eta}{C_{z}}-\frac{\hat{E} p}{2 \eta}\left(1-\eta^{2}\right)\right)
$$

Left panels: Orbit-induced pitch angel dispersion modifies the RE pdf. (a) Model distribution; (b) Modified distribution due to full-orbit effects.

Right panels: Not including full-orbit effects underestimates the spectra.
(a) $Z_{\text {eff }}=1$, (b) $Z_{\text {eff }}=10$.

SYNCHROTRON SPECTRA AS MEASURED BY THE CAMERA

Avalanche type RE distribution function

$$
f_{R E}(p, \eta)=\frac{\hat{E}_{p}}{2 \pi C_{z} \eta} \exp \left(-\frac{p \eta}{C_{z}}-\frac{\hat{E}_{p}}{2 \eta}\left(1-\eta^{2}\right)\right)
$$

Left panels: Orbit-induced pitch angel dispersion modifies the RE pdf. (a) Model distribution; (b) Modified distribution due to full-orbit effects.

$$
\ldots P_{R}(\lambda, \psi, \chi)=-P_{R}^{\Omega_{a}}(\lambda)
$$

Right panels: Not including full angular dependence of the synchrotron emission and full-orbit effects significantly overestimates the spectra.
(a) $Z_{\text {eff }}=1$, (b) $Z_{\text {eff }}=10$.

BACKWARD MONTE CARLO METHOD

To illustrate the method we will use the simple 2-D Fokker-Planck model:

$$
\frac{\partial f}{\partial t}=\mathcal{F}+\mathcal{C}+\mathcal{R}
$$

- Electric field acceleration:

$$
\mathcal{F}=-E\left[\frac{\xi}{p^{2}} \frac{\partial}{\partial p}\left(p^{2} f\right)+\frac{\partial}{\partial \xi}\left(\frac{1-\xi^{2}}{p} f\right)\right]
$$

- Collisions operator:

$$
\mathcal{C}=\frac{1}{p^{2}} \frac{\partial}{\partial p}\left[\left(1+p^{2}\right) f\right]+\frac{\nu_{c}}{2} \frac{\partial}{\partial \xi}\left[\left(1-\xi^{2}\right) \frac{\partial f}{\partial \xi}\right]
$$

with $\nu_{c}=(Z+1) \sqrt{1+p^{2}} / p^{3}$.

- Synchrotron radiation reaction force:

$$
\mathcal{R}=\frac{1}{\tau}\left\{\frac{1}{p^{2}} \frac{\partial}{\partial p}\left[p^{3} \gamma\left(1-\xi^{2}\right) f\right]-\frac{\partial}{\partial \xi}\left[\frac{1}{\gamma} \xi\left(1-\xi^{2}\right) f\right]\right\}
$$

STOCHASTIC DIFFERENTIAL EQUATION MODEL

$\theta=$ pitch angle, $\xi=\cos \theta$
$p=$ magnitud of relativistic momentum.

$$
\begin{aligned}
& d p_{t}=b_{1}\left(p_{t}, \xi_{t}\right) d t \\
& d \xi_{t}=b_{2}\left(p_{t}, \xi_{t}\right) d t+\sigma\left(p_{t}, \xi_{t}\right) d W_{t}
\end{aligned}
$$

where

$$
\begin{aligned}
b_{1} & =E \xi-\frac{\gamma p}{\tau}\left(1-\xi^{2}\right)-\frac{1+p^{2}}{p^{2}}, \\
b_{2} & =\frac{E\left(1-\xi^{2}\right)}{p}+\frac{\xi\left(1-\xi^{2}\right)}{\tau \gamma}-\xi \nu_{c} \\
\sigma & =\sqrt{\nu_{c}\left(1-\xi^{2}\right)}, \quad \tau=\tau_{r} / \tau_{c}
\end{aligned}
$$

$\tau_{c}=m_{e} c /\left(E_{c} e\right)$ and $\tau_{r}=6 \pi \epsilon_{0} m_{e}^{3} c^{3} /\left(e^{4} B^{2}\right)$.
W_{t} is the standard Wiener process (Brownian motion) according to which the increments $d W_{t}$ are drawn from a Gaussian distribution with zero mean and variance equal to $d t$.

PROBLEM FORMULATION

- What is the probability, $P_{\text {RE }}$, that an electron with coordinates (p, ξ) will runaway at, or before, a prescribed time?
- More formally: for $(t, p, \xi) \in[0, T] \times\left[p_{\min }, p_{*}\right] \times[-1,1]$, where $p_{\text {min }}$ is a lower momentum boundary, $P_{\mathrm{RE}}(t, p, \xi)$, is defined as the probability that an electron located at (p, ξ) at $t_{0}=0$ will acquire a momentum p_{*} on, or before, $t>0$.

Given $f\left(t, p_{t}, \xi_{t} \mid p, \xi\right)$,
$P_{\mathrm{RE}}=\mathbb{E}\left[\chi\left(p_{t}, \xi_{t}\right) \mid p_{0}=p, \xi_{0}=\xi\right]=\int_{\mathbb{R}^{2}} \chi\left(p_{t}, \xi_{t}\right) f\left(t, p_{t}, \xi_{t} \mid p, \xi\right) d p_{t} d \xi_{t}$
where

$$
\chi\left(p_{t}, \xi_{t}\right)= \begin{cases}1, & \text { if } p_{t} \geq p_{*} \\ 0, & \text { otherwise }\end{cases}
$$

indicates if a realization $\left(p_{t}, \xi_{t}\right)$ of the SDEs is a runaway path.

DIRECT AND ADJOINT METHOD TO COMPUTE $P_{\text {RE }}$

- Direct, "brute-force", MC method: simulate a very large number of paths, $\left(p_{t}, \xi_{t}\right)$, by solving the SDEs with initial condition $\left(p_{0}, \xi_{0}\right)=(p, \xi)$, and use the paths to approximate the expectation.
- Simple but very inefficient due to the slow convergence of the MC sampling, and the need to generate new set of paths at each point in phase space.
- Adjoint method [Liu, et al, 2016, 2017] get $P=P_{\mathrm{RE}}(T-t, p, \xi)$ for $(t, p, \xi) \in[0, T] \times\left[p_{\min }, p_{*}\right] \times[-1,1]$ by solving the terminal value problem

$$
\left\{\begin{array}{l}
\frac{\partial P}{\partial t}+b_{1} \frac{\partial P}{\partial p}+b_{2} \frac{\partial P}{\partial \xi}+\frac{\sigma^{2}}{2} \frac{\partial^{2} P}{\partial \xi^{2}}=0 \\
P(T, p, \xi)=\chi(p, \xi)
\end{array}\right.
$$

BACKWARD MONTE CARLO (BMC) METHOD

The key idea of the BMC method is to compute $P(t, p, \xi)$ directly from the Feynman-Kac formula giving the probability that a particle at (p, ξ) at time t, will runaway at a time $\leq T$

$$
P(t, p, \xi)=\mathbb{E}\left[\chi\left(p_{T}, \xi_{T}\right) \mid p_{t}=p, \xi_{t}=\xi\right]
$$

where $\chi\left(p_{T}, \xi_{T}\right)=P\left(T, p_{T}, \xi_{T}\right)$.

- Introduce a uniform partition of the time interval $[0, T]$,

$$
\mathcal{T}=\left\{0=t_{0}<t_{1}<\cdots<t_{N}=T\right\}
$$

- Within the time interval $\left[t_{n}, t_{n+1}\right]$,

$$
P\left(t_{n}, p, \xi\right)=\mathbb{E}\left[P\left(t_{n+1}, p_{t_{n+1}}, \xi_{t_{n+1}}\right) \mid p_{t_{n}}=p, \xi_{t_{n}}=\xi\right] .
$$

- For small $\Delta t=t_{n+1}-t_{n}$

$$
\begin{aligned}
p_{t_{n+1}} & =p_{t_{n}}+b_{1}\left(p_{t_{n}}, \xi\right) \Delta t \\
\xi_{t_{n+1}} & =\xi_{t_{n}}+b_{2}\left(p_{t_{n}}, \xi_{t_{n}}\right) \Delta t+\sigma\left(p_{t_{n}}, \xi_{t_{n}}\right) \Delta W
\end{aligned}
$$

BACKWARD MONTE CARLO (BMC) METHOD

Within $\left(t_{n}, t_{n+1}\right)$, the expectation can be approximated as

$$
P\left(t_{n}, p, \xi\right) \approx \int_{\mathbb{R}} P\left(t_{n+1}, p+b_{1} \Delta t, \xi+b_{2} \Delta t+\sigma x\right) \frac{e^{-\frac{1}{2} \frac{x^{2}}{\Delta t}}}{\sqrt{2 \pi \Delta t}} d x
$$

That is, the computation of $P\left(t_{n}, p, \xi\right)$ knowing $P\left(t_{n+1}, p, \xi\right)$ is reduced to the evaluation of an integral that can be efficiently computed using the Gauss-Hermite quadrature rule

$$
\begin{equation*}
P\left(t_{n}, p, \xi\right) \approx \sum_{m=1}^{M} w_{m} P\left(t_{n+1}, p^{\mathrm{GH}}, \xi_{m}^{\mathrm{GH}}\right) \tag{1}
\end{equation*}
$$

where $M=$ number of quadrature points, $w_{m}=$ weights,

$$
\xi_{m}^{\mathrm{GH}}=\xi+b_{2}(p, \xi) \Delta t+\sigma(p, \xi) \sqrt{2 \Delta t} q_{m}
$$

and $\left\{q_{m}\right\}_{m=1}^{M}$ is the standard Gauss-Hermite abscissa.

COMPARISON BETWEEN BMC AND DIRECT MC

Pitch angle $\theta=10^{\circ}$ and $T=1.6$.

SCALING OF BMC METHOD RELATIVE ERROR $(p, \theta)=\left(0.7,10^{\circ}\right),\left(0.7,45^{\circ}\right),\left(0.7,80^{\circ}\right)$ and $T=1.6$.

TIME EVOLUTION OF PROBABILITY OF RUNAWAY $P_{R E}$

Radiation reaction force $\sim 1 / \tau$, collisions $\sim Z$, acceleration $\cong E$.

STEADY STATE (TIME ASYMPTOTIC)
 PROBABILITY OF RUNAWAY

"-.-." $P_{\mathrm{RE}}=0.9$, "- --" $P_{\mathrm{RE}}=0.5$, and "-" 0-D particle model. Radiation reaction force $\sim 1 / \tau$, collisions $\sim Z$, acceleration $\cong E$.

EXPECTED RUNAWAY TIME

EXPECTED LOSS TIME

DEPENDENCE OF RESULTS ON RUNAWAY BOUNDARY p*

(a) \& (c) Asymptotic P_{RE} for $p_{*}=6$ and $p_{*}=2$
(b) \& (d) Expected runaway time for $p_{*}=6$ and $p_{*}=2$
(e) \& (f) Expected loss time for $p_{*}=6$ and $p_{*}=2$
(g) Mean and 90% confidence interval of loss time for $\theta=10^{\circ}$

PRODUCTION RATE

$$
\gamma=\frac{N_{\mathrm{RE}}(t)}{N}=\int_{0}^{\infty} d p \int_{-1}^{1} d \xi f(p, \xi) P_{\mathrm{RE}}(t, p, \xi)
$$

For a Maxwellian distribution

$$
\gamma(t)=\frac{2}{\sqrt{\pi} \delta^{3}} \int_{0}^{p_{*}} d p e^{-(p / \delta)^{2}} p^{2} \int_{-1}^{1} d \xi P_{\mathrm{RE}}(t, p, \xi)+\gamma_{\infty}
$$

Radiation reaction force $\sim 1 / \tau$, collisions $\sim Z_{\text {, }}$, acceleration $\cong E$.

CONCLUSIONS

- The serious threat posed by disruptions in general, and runaway electrons in particular, to ITER calls for the development of advanced modeling and simulation efforts.
- Reduced models need to be complemented by detailed quantitative modeling that do not rely on restrictive assumptions.
- Of particular interest is the incorporation of space-dependent geometric effect.
- The ORNL program target these efforts, focussing on the development of KORC (Kinetic Orbit Runaway electrons Code), and backward Monte-Carlo methods.

CONCLUSIONS

- KORC is designed as a modular code, with each module adding different physics and diagnostics.
- Current modules include full-orbit relativistic integrator for RE in the presence of general 3-D electric and magnetic (integrable or chaotic) fields with radiation damping and collisions.
- In parallel to the full-orbit module, we have also developed a guiding center relativistic integrator for RE (KORC-GC).
- Most recently we have added a synchrotron synthetic diagnostic.

CONCLUSIONS

- Orbit effects on synchrotron radiation (SR):
- Collisionless (orbit-induced) pitch angle scattering has a direct effect on the RE distribution function and thus on SR.
- Orbit-averaged 2-D phase space models underestimate SR power and shift the spectra.
- SR synthetic diagnostic:
- Incorporates full-orbit information, camera geometry, and full-angular dependence of radiation
- SR distribution on "camera plane" dependent on angular distribution of radiation and not trivially related to distribution on poloidal plane.
- Oversimplification of the angular distribution of SR overestimates the intensity of the radiation as measured by a camera.

CONCLUSIONS

- Backward Monte Carlo Method:
- Based on the direct solution of time-discretized Feynman-Kac formula using Gauss-Hermite quadrature methods.
- Accurate, efficient, and unconditional stable method.
- Used to compute the time-dependent probability of runaway, expected runaway time, expected loss time, and production rate.
- Extension to high-dimensional cases (i.e., beyond 2-D phase space) not a significant challenge exploiting sparse quadrature rules.
- Modeling and simulation of impurity-based RE suppression: [Don Spong presentation].

