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Starting Sliding Screening

Runaway team

Ola Embréus

PhD student

Linnea Hesslow

PhD student

Mathias Hoppe

PhD student

George Wilkie

Postdoc

• Ola: Close collisions, Bremsstrahlung
• Linnea: Partial screening effects
• Mathias: Synthetic synchrotron diagnostics
• George: Self-consistent electric field
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Starting Sliding Screening

Tools available for runaway studies at Chalmers

• 0D2P relativistic Fokker-Planck solvers
CODE – runaway electrons, linearized collision operator

• synchrotron radiation
• Bremsstrahlung
• effect of partial screening NEW!
• Rosenbluth-Putvinskii, Chiu-Harvey, Boltzmann

avalanche operator

NORSE – nonlinear collision operator NEW!
CODION – runaway ions

• Radiation
SOFT – synthetic synchrotron diagnostics NEW!

SYRUP – synchrotron spectra
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Starting Sliding Screening

NORSE: NOn-linear Relativistic Solver for Electrons

Motivation
• The more runaways, the bigger
the problem

• Existing tools break down when
more than a few % runaways

• Such RE densities obtainable in
experiments

Features
• 2D in momentum space, no
spatial dependence

• Full Braams & Karney collision
operator

• Arbitrary electric field strengths
• Radiation reaction
• Time-dependent plasma
parameters
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Benchmark: relativistic weak-field conductivity

• Braams & Karney list
conductivities

• weak-field
• large T range
• same collision

operator

• NORSE reproduces these
perfectly Θ
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Starting Sliding Screening

Benchmark: conductivity in strong fields

• Comparison to Weng et
al. [PRL 100, 185001 (2008)]

• They calculate modified
Spitzer conductivity in
strong E field

• Non-relativistic
• Nice agreement!

(Numerical heating in Weng’s data for

E/ED = 0.01)
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Starting Sliding Screening

Distribution evolution
E/ED = 0.01

p||

-0.1 -0.05 0 0.05 0.1 0.15

Ê
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Starting Sliding Screening

Bulk heating

• E field is a source of heat!
• Must be removed in a

linear treatment
• Automatically accounted

for in NORSE

• In practice bulk keeps
temperature or even cools –
a heat sink is useful

• Does the details of the heat
sink influence the RE
generation? Current evolution and transition to slide-away

is highly sensitive to the details of the sink!

Slide-away: Net parallel force experienced by electrons is positive in the
entire momentum space.
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Starting Sliding Screening

Electric field

An ITER-like scenario calculated by GO [Smith et al (2006)]

• GO: generation of runaway electrons coupled to a
diffusion equation for the electric field.

1
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(
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)avalanche

• T final
e = 10 eV, B = 5.3 T, Zeff = 1,

j0 = 0.62 MA/m2, thermal quench time 1 ms.
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(
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• T final
e = 10 eV, B = 5.3 T, Zeff = 1,

j0 = 0.62 MA/m2, thermal quench time 1 ms.

Electric field in V/m and normalized

to the Dreicer field after the thermal

quench.
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Starting Sliding Screening

Transition to slide-away depends on the heat-sink

• No heat sink: all energy
supplied by the electric field
remains.

• Weak heat sink: the
energy-removal rate of the heat
sink is restricted to 0.5 MW/m3

• Strong heat sink: keep the
bulk temperature at 10 eV; any
excess heat in the bulk region is
removed
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• Weak heat sink: the
energy-removal rate of the heat
sink is restricted to 0.5 MW/m3

• Strong heat sink: keep the
bulk temperature at 10 eV; any
excess heat in the bulk region is
removed

Normalized current density in the different heat-

sink scenarios. Current density becomes half of

the original at tN (no HS), tW (weak HS) and tS

(strong HS).
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Starting Sliding Screening

Runaway electron population

• Maximum particle energies
depend on the heat-sink
scenario.

• No HS and weak HS:
particle do not reach
relativistic energies

• Strong HS: particle
energies of 22 MeV are
reached just before
slide-away.

• In the strong HS case the
nr/n grows more slowly and
the runaways have time to
reach high energies.
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• Strong HS: particle
energies of 22 MeV are
reached just before
slide-away.

• In the strong HS case the
nr/n grows more slowly and
the runaways have time to
reach high energies.

Tail of the parallel electron distribution. Thin

lines f at tN (no HS), tW (weak HS) and tS

(strong HS), and thick lines f immediately before

the transition to slide-away.
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Runaway electron population

• Maximum particle energies
depend on the heat-sink
scenario.

• No HS and weak HS:
particle do not reach
relativistic energies

• Strong HS: particle
energies of 22 MeV are
reached just before
slide-away.

• In the strong HS case the
nr/n grows more slowly and
the runaways have time to
reach high energies.
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Feedback loop

• Collisional friction is lower in
a hotter distribution

• Dreicer field is ∝ 1/T .
• For a given field strength
E/ED increases as the bulk
heats up.

• Decreasing nbulk also leads to
a positive feedback.

• Eventually the friction
becomes low enough that the
parallel balance of forces
becomes positive everywhere:
Slide-away!

Effective temperature of the bulk population
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Summary

NORSE [Stahl et al CPC (2017)]

• Relativistic, non-linear electron dynamics
• Radiative effects, time-dependent scenarios
• Efficient, freely available

Non-linear effects
• Conductivity different from Spitzer for strong fields
• Large heating of electron bulk by parallel E -field
• Slide-away at much weaker electric fields than previously expected.

Heat-sink
• Severity of disruptions can be affected by the properties of heat sink.
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Starting Sliding Screening

Effect of partial screening

• Disruption mitigation via material injection: typically nZ > nD .

• In the cold post-disruption plasma, impurities are weakly ionized.

• Collision frequencies for fast electrons are expected to be enhanced.

Previous work
• Elastic collisions: Thomas–Fermi theory (limited to intermediate distances from

the nucleus, and does not capture the shell structure of the ion): [Kirillov et al Fizika
Plazmy (1975)] and [Zhogolev and Konovalov VANT (2014) in Russian]

• Kinetic simulations in [Aleynikov et al, IAEA proceedings 2014] refers to [Zhogolev&
Konovalov] for details.

• Inelastic collisions: Rosenbluth–Putvinski rule of thumb: half of the bound
electrons [Rosenbluth and Putvinski, NF (1997)]

• Stopping-power formula for inelastic collisions was used in a test-particle
approach in [Martin-Solis et al PoP (2015)].
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Modelling of the effect of partial screening

• Generalized collision operator including the effect of partial screening

C e
test = νDL(fe) +

1
p2

∂

∂p

[
p3
(
νS fe +

1
2
ν‖p

∂fe
∂p

)]
• Model elastic collisions quantum-mechanically using density functional
theory.

• Using kinetic simulations demonstrate the effect of partial screening on
the distribution function, current decay and critical electric field.

• Analytical expression of the enhanced critical electric field.

[Hesslow et al, PRL (2017)]
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Effect of partial screening

• Definitions
• Complete screening: the electron interacts only with the net ion

charge
• No screening: the electron experiences the full nuclear charge

• Elastic collisions
• Interaction strength proportional to the charge squared.
• No screening enhances the interaction strength by a factor

X 2 = (Z/Z0)2, where Z0 is the ionization state and Z is the charge
number of the nucleus.

• Inelastic collisions (leading to excitation of the ion)
• Increase the effective electron density of the plasma, as experienced by

the fast electron.
• The rate of e-e collisions will be an order X larger.
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Elastic collisions νei
D

Cross section in Born approximation, valid for v/c � Zα

dσej

dΩ
=

(
r20
4p4

)(
cos2(θ/2)p2 + 1

sin4(θ/2)

)
|Zj − Fj (q)|2

Form factor: Fj (q) =

∫
ρe,j (r)e−iq·r/a0 dr

q = 2p
α sin(θ/2), p = γ v

c , Z : atomic number, Z0: net charge

Limits:
Low energy |Z − F | → Z0: complete screening (usual case)
High energy |Z − F | → Z : no screening (interaction with nucleus)
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Elastic collisions: density and form factor

From density functional theory (DFT)
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Enhancement of deflection frequency νei
D

• Compare to completely screened
• Excellent agreement between
analytical model (TF-DFT) and full
DFT

• Significant effect already at
p ∼ pc ∼ 0.1

• p � 1: νei
D /ν

ei
D,CS ∼ (Z/Z0)2 ∼ 102

• Parameters: T = 10 eV,
nAr+ = 1020 m−3 10−2 100 102

p

100

101

102

ν
ei D
/
ν
ei D
,C
S

TF-DFT

DFT

Ar+

Ar2+

p = γ
v

c
, E =10MeV ↔ p = 20.
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Inelastic collisions νee
S

Bethe stopping power formula (matched with low energy asymptote)

νee
S = νee

S,cs

{
1 +
∑

j

nj Ne,j

ne ln Λ

[
1
k

ln
(
1 +hk

j

)
− β2

]}
,

hj = p
√
γ − 1/Ij , k = 5, β = v/c

Ij mean excitation energy [Sauer et al, Advances in Quantum Chemistry 2015]

• Rosenbluth–Putvinski rule of
thumb:
νee

S,rp≈νee
S,cs

(
1 + 1

2

∑
j

nj

ne
Ne,j

)
,

where Ne is the number of
bound electrons.

• RP rule of thumb leads to
greater enhancement than the
full formula up to p ' 1.

10−2 100 102

p

100

101

ν
ee S
/
ν
ee S
,C
S

Bethe-like

RP

Ar+

Ar2+
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• Enhancement due to elastic
collisions kicks in for lower
momenta and is larger for
high momenta than the
corresponding one for inelastic
collisions.

10−2 100 102
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101

p
ν
ee S
/
ν
ee S
,C
S

(b) inelastic
100

101

102

ν
ei D
/
ν
ei D
,C
S

(a) elastic

full model
RP

Parameters: T = 10 eV, nAr+ = 1020 m−3
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Effect on distribution function

• Implemented in CODE.
• Collisional deceleration of
initial beam-like distribution.

• Contours of log10(F ),
F =(2πmeT )3/2fe/ne

• Parameters: 25 ms collisional
deceleration T = 10 eV,
Ar+, nAr=nD=1020 m−3
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Current decay

0 10 20 30 40 50

nAr t [10
20m−3

×ms]

0
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1

j R
E
/
j R

E
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=
0
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elastic + inelastic
elastic
inelastic
inelastic RP
complete screening

• Same initial distribution as previous figure.
• Decay time is proportional to 1/nAr for nAr & nD .
• Bands represent nAr∈ [0.5 nD, 100 nD].
• RP model underestimates the decay rate and shows a different current
evolution.
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Critical electric field

• Important for generation and
decay

• Constant ln Λ and no
screening or radiation effects:
Ec = ne e3 ln Λ0

4πε20me c2

• Ec enhanced by
• Partially ionized atoms
• Synchrotron radiation
• Bremsstrahlung
• Energy-dependent

Coulomb logarithm ln Λ
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Enhanced critical electric field E eff
c

• Large enhancement of
Eeff

c due to partial
screening

• Significant effect from
elastic collisions

• RP model underestimates
E eff

c

10−2 100 102

nAr/nD

1

5

10
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20
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35

E
eff c
/
E

c

full model

analytic formula

RP inelastic

Eeff
c
Ec
≈ 1 +

1
ln Λ0

(
7− ln

√
TeV + 240

nAr,tot
ne

)
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Derivation of E eff
c

• Assume fast pitch-angle dynamics in Fokker–Planck equation:1

∂ f̄

∂t
=

∂

∂p

[
(pνS − eEξ)f̄

]
+

∂

∂ξ

[
(1− ξ2)

(
eE

pmc
f̄ +

1
2
νD
∂ f̄

∂ξ

)
︸ ︷︷ ︸

=0

]
where f̄ = p2f .

• Averaged force balance: 〈eE eff
c 〉 = minp pνS

• Up to triply ionized argon2 nAr & 0.1nD (synchrotron neglected)

Eeff
c
Ec
≈ 1 +

1
ln Λ0

(
7− ln

√
TeV + 240

nAr,tot
ne

)
1Lehtinen et al, JGR (1999), Aleynikov and Breizman, PRL (2015)
2Hesslow et al, PRL (2017); Details in Hesslow et al, EPS (2017)
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Simulate dissipation of runaway beam [1/2]

• Linear current decay predicted1 : −∂j
∂t
∝ E ≈ E eff

c

• Implemented in Fokker–Planck solver CODE with 0-D inductive electric
field2

E = −L̂
∂j

∂t
, L̂ =

AL

2πR
∼ µ0A

2π
• Forward-beamed initial distribution obtained by simulation with large
E-field, average runaway energy: 17.2 MeV

1Breizman NF (2014)
2Wilkie et al in preparation; Stahl et al EPS P2.150
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Simulate dissipation of runaway beam [2/2]

• Test −L̂∂j
∂t

= E
?
≈ E eff

c

• Good agreement at high
inductance:
→ current decay rate is ∝ E eff

c /L̂

• Enhanced E eff
c ⇒ faster

dissipation
• Parameters: T = 10 eV, Ar+ with

nAr=4nD, nD=1020 m−3, initial
average runaway energy 17.2 MeV
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Starting Sliding Screening

Summary: partial screening

Enhanced collision frequencies
• Analytical expressions for the deflection and slowing-down frequencies.
• Significant enhancement compared to complete screening, already at
sub-relativistic electron energies.

Current decay time is reduced
• Low inductance case: current decay time is approximately half
compared to the RP rule of thumb.

• High inductance case: current decay rate is ∝ E eff
c /L̂

Critical electric field

Eeff
c
Ec
≈ 1 +

1
ln Λ0

(
7− ln

√
TeV + 240

nAr,tot
ne

)
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SOFT

Highlights

• Recent papers
• NORSE: A solver for the relativistic non-linear Fokker-Planck equation

for electrons in a homogeneous plasma
[Stahl, Landreman, Embréus and Fülöp, CPC 212, 269 (2017)]

• Runaway-electron formation and electron slide-away in an ITER
post-disruption scenario
[Stahl, Embréus, Landreman, Papp and Fülöp, JPCS 775 012011 (2016)]

• Effect of partially ionized impurities on fast electron dynamics
[Hesslow, Embréus, Stahl, DuBois, Papp, Newton and Fülöp, PRL 118, 255001
(2017)]

• In preparation
• SOFT: a synthetic synchrotron diagnostic for runaway electrons

[M Hoppe et al]
• On the relativistic large-angle electron collision operator for runaway

avalanches in plasmas [O Embréus et al]
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Outline

4 SOFT
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SOFT

SOFT: Synthetic synchrotron diagnostics

• SOFT – Synchrotron-detecting
Orbit Following Toolkit

• Takes spectrum, camera
location/size/viewing direction
into account

• Uses experimentally obtained
magnetic equilibria

• Solves the guiding-center
equations of motion to
distribute particles poloidally
(accounts for geometric effects)

• Momentum-space distribution of
runaways (e.g. obtained by
CODE) given as input

Experimental image provided by A
Tinguely and R Granetz
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SOFT

Strange synchrotron image? A case for SOFT!

M. Hoppe, et. al., EPS 2017 conference, (2017).
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SOFT

Spare slides
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SOFT

Heat-sink

• The total energy change can be written as

dW
dt

= mec
2
∫

Ω
d3p (γ−1)

(
− eE
mec

· ∂f
∂p

+
∂

∂p
· (Fsf ) + kh

∂

∂p
· (Shf )

)
from which kh can be determined in each time step by demanding that
dW /dt = 0.

• Sh(p) is an isotropic function of momentum (a natural choice is a
Maxwellian).

• The momentum space need not necessarily encompass the entire
population domain.

• Im the figures Ω is the bulk of the distribution, which was defined as all
particles with v < 4vTh0 where vTh0 is the thermal speed at the initial
temperature.
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