Topological Dependence of Runaway Avalanche Threshold in Momentum Space

Chris McDevitt

In collaboration with: Zehua Guo and Xianzhu Tang

Los Alamos National Laboratory

Work supported by SCREAM SciDAC

Outline

 Runaway Vortex: Momentum space topology of primary runaway distribution function

 Link of avalanche threshold to momentum space topological change ⇔ O-X merger (disappearance of runaway vortex)

 Self-consistent formulation of small and large angle collisions
 → Impact on avalanche threshold and growth rate

Motivation: Avalanche Threshold

- The avalanche threshold is a crucial quantity for disruption mitigation scenarios
 - Provides guidance as to what conditions are necessary in order to avoid runaway generation through secondary generation
- An accurate prediction of the avalanche threshold has proven difficult:
 - Large amounts of high-Z materials typically present ⇔ resulting collisional coefficients highly complex (free-bound, scattering by partially shielded nucleus, etc) [Breizman IAEA 2016, Hesslow et al. 2017]
 - Runaway models typically make different modeling assumptions to order one variation of avalanche threshold [Rosenbluth-Putvinski 1997– Martin-Solis 2017]
- Here we are interested in identifying a robust indicator of the avalanche threshold
 - Independent of specific model assumptions

Runaway Electrons

- Runaway electrons may be present when the parallel electric field overcomes the collisional drag
 - In the absence of other physics electrons can be accelerated to arbitrarily high energies
 - Critical electric field above which electrons are accelerated given by Connor-Hastie threshold E_c

- Energy of runaway electrons thought to be limited by radiation:
 - Bremsstrahlung radiation: likely most important for dense plasmas with a large impurity content
 - Synchrotron radiation: most important mechanism in a range of parameter regimes (Guo et al. 2017)

 For *E* > *E_c* electrons in a broad region of momentum space capable of running away

- For $E > E_c$ electrons in a broad region of momentum space capable of running away
 - Presence of synchrotron radiation constrains "runaway" region
 - Synchrotron radius damps perpendicular energy ⇔ narrow "channel" along ξ=-1 axis present

- For $E > E_c$ electrons in a broad region of momentum space capable of running away
 - Presence of synchrotron radiation constrains "runaway" region
 - Synchrotron radius damps perpendicular energy ⇔ narrow "channel" along ξ=-1 axis present
 - Pitch-angle scattering capable of transporting electrons out of channel ⇔ electrons slow down due to sync. rad.

- For $E > E_c$ electrons in a broad region of momentum space capable of running away
 - Presence of synchrotron radiation constrains "runaway" region
 - Synchrotron radius damps perpendicular energy ⇔ narrow "channel" along ξ=-1 axis present
 - Pitch-angle scattering capable of transporting electrons out of channel ⇔ electrons slow down due to sync. rad.

- 1. For a sufficiently strong electric field, primary electrons are pinched back to ξ =-1 axis \rightarrow runaway vortex
 - Leads to confinement of runaway electron population

- For $E > E_c$ electrons in a broad region of momentum space capable of running away
 - Presence of synchrotron radiation constrains "runaway" region
 - Synchrotron radius damps perpendicular energy ⇔ narrow "channel" along ξ=-1 axis present
 - Pitch-angle scattering capable of transporting electrons out of channel ⇔ electrons slow down due to sync. rad.

- 1. For a sufficiently strong electric field, primary electrons are pinched back to ξ =-1 axis \rightarrow runaway vortex
 - Leads to confinement of runaway electron population
- 2. For weaker electric fields, primary electrons return to bulk:
 - Pitch-angle scattering prevents electrons from collapsing onto ξ =-1 axis
 - No effective means of confining runaway electrons

O-X Merger of Primary Distribution

- Topology of momentum space flows distinct for the two cases discussed above (Guo et al. 2017)
- Above threshold:
 - Runaway vortex present at high energy
 - Provides a means of confining runaway electrons
- Below threshold:
 - All flux lines return to electron bulk
 - No means of confining runaway electrons
- Threshold for runaway vortex distinct from Connor-Hastie threshold:

 $E_{ox} > E_c$

Primary Runaway Distribution

- Bump and energy spread of distribution set by runaway vortex
- Threshold for bump is distinct from O-X merger threshold $E_b > E_{ox}$
 - Presence of runaway vortex does not imply a bump in runaway distribution

Outline

Runaway Vortex: Momentum space topology of primary runaway distribution function

 Link of avalanche threshold to momentum space topological change ⇔ O-X merger (disappearance of runaway vortex)

 Self-consistent formulation of small and large angle collisions
 Impact on avalanche threshold and growth rate

Source of Secondary Electrons -> Avalanche

- Avalanche instability arises due to largeangle collisions of runaways with thermal electrons
- Rosenbluth-Putvinski (RP) secondary source provides a particularly simple picture:
 - Runaway electrons assumed to be located at infinite energy on pitch-angle axis
 - Fraction of "secondary" electrons kicked into runaway region leads to exponential growth of runaway population

Source of Secondary Electrons -> Avalanche

- Avalanche instability arises due to largeangle collisions of runaways with thermal electrons
- Rosenbluth-Putvinski (RP) secondary source provides a particularly simple picture:
 - Runaway electrons assumed to be located at infinite energy on pitch-angle axis
 - Fraction of "secondary" electrons kicked into runaway region leads to exponential growth of runaway population
- A simple extension of the above model is to account for the energy/pitch-angle distribution of the primary electrons
 - Leads to a distributed source of secondary electrons

Runaway Electron Solvers

 $\begin{array}{c}
-0.65 \\
-0.7 \\
-0.75 \\
-0.8 \\
-0.85 \\
-0.9 \\
-0.95 \\
-1 \\
5 \\
10 \\
15 \\
20 \\
25 \\
30 \\
\gamma -1 \\
\end{array}$

- Continuum Fokker-Planck solver [Guo 2017]
 - Considers direct solution of Fokker-Planck equation
 - Solves for tail electron distribution while matching to a Maxwellian-Jüttner distribution at low energy
 - Allows for accurate calculation of momentum space [~][−] fluxes ⇔ momentum space topology [−]

p/mc

10

The relativistic Fokker-Planck equation is solved via two distinct approaches:

- Particle based solver
 - Pitch-angle diffusion described by Monte Carlo collision operator [Boozer 1981], energy diffusion neglected
 - Absorbing boundary condition assumed at low energy

A Common Model of Avalanche Instability

- Model includes [Liu et al. 2017]:
 - Distributed secondary source term
 - Test-particle collision operator
 - Synchrotron radiation used to limit the runaway's energy

$$\frac{\partial f_e}{\partial t} - \bar{E}\left(\xi\frac{\partial f_e}{\partial p}\right) + \frac{1-\xi^2}{p}\frac{\partial f_e}{\partial \xi} = C\left(f_e\right) + C_{rad}\left(f_e\right) + S_{sec}\left(f_e\right)$$

- Model involves several idealizations:
 - Does not incorporate self-consistent downscattering of primary electrons
 - Uses constant Coulomb logarithm

Avalanche growth rate and threshold accurately reproduced by both the particle and continuum Fokker-Planck solvers

Relation of Avalanche Threshold to Features of Primary Distribution

- Runaway vortex → necessary in order to confine runaway electron population at high energy
- Avalanche threshold well correlated with O-X merger over a broad range of parameters:

$$Z = 1 - 10, \ \alpha = \tau_c / \tau_s = 0.05 - 0.3$$

Merger of O-X Points can be Described Analytically

• Location of O and X points set by the crossing of the $\Gamma_p = 0$ and $\Gamma_{\xi} = 0$ surfaces

$$\Gamma_p = \left[-\xi \bar{E} - C_F - \alpha p \gamma \left(1 - \xi^2\right)\right] f_e = 0$$

$$\Gamma_\xi = -\left(1 - \xi^2\right) \left(E - \alpha \frac{p}{\gamma}\xi + \frac{C_B}{p} \frac{\partial \ln f_e}{\partial \xi}\right) f_e = 0$$

• Width of pitch-angle distribution to scale with the width of the runaway region $\Delta \xi_p$ [Decker et al. 2016, Guo et al., 2017]

$$\Delta \xi = \sqrt{2} \Delta \xi_p \approx \sqrt{2} \frac{E - 1 - p^{-2}}{2\alpha p\gamma + \bar{E}}$$

- Allows location of $\Gamma_p = \Gamma_{\xi} = 0$ surfaces to be estimated:
 - Provides physics based means of estimating O-X merger
 model can be easily extended to include
 a variety of physical processes

ξ

Avalanche Threshold: O-X Merger

- The avalanche threshold is closely tied to the O-X merger
 - Presence of an O-point necessary to sustain a runaway population
 - Avalanche threshold is largely independent of whether Rosenbluth-Putvinski source or more comprehensive source of secondary electrons is used
- Close agreement for a range of values of synchrotron radiation/Z numbers

$$Z = 1 - 10, \ \alpha = \tau_c / \tau_s = 0.025 - 0.3$$

Outline

Runaway Vortex: Momentum space topology of primary runaway distribution function

 Link of avalanche threshold to momentum space topological change <> O-X merger (disappearance of runaway vortex)

 Self-consistent formulation of small and large angle collisions
 → Impact on avalanche threshold and growth rate

Energy Dependent Coulomb Logarithm for Runaway Electrons

- The Coulomb logarithm for relativistic electrons can deviate significantly from that of thermal electrons
- Defining $\ln \Lambda = \ln b_{max}/b_{min}$, where $b_{max} = \lambda_D$, $b_{min} = \max (b_0, \lambda_{dB})$
- However, both the classical distance of closest approach b_0 and the de Broglie wavelength λ_{dB} scale with the relative momentum between colliding electrons:

$$b_0 \sim \frac{1}{\bar{p}^2}, \quad \lambda_{dB} \sim \frac{1}{\bar{p}}, \quad \ln \Lambda_{rel} > \ln \Lambda_{Te}$$

- Thus, $b_{min} \ll b_{min}^{Te}$, $\ln \Lambda_{rel} > \ln \Lambda_{Te}$, for relativistic electrons, $\lambda_{dB}/b_0 \approx 137/2$ hence [Solodov-Betti 2009]: $\ln \Lambda_{rel}(p) = \ln \frac{\lambda_D}{\lambda_{dB}(p)}$
 - Form described in [Mosher 1975, Martin-Solis 2017] for free-free collisions
 - use $b_{min} = b_0 \rightarrow$ leads to significantly larger Coulomb logarithm

Conservative Large-Angle Collision Operator

 Redistribution of primaries can be accounted for by considering complete form of linearized Boltzmann collision operator:

$$\frac{\partial f_e}{\partial t}\Big|_{LA} = \frac{n_b}{2\pi p^2} \int d^3 p' v' \frac{d\sigma_M \left(p', p\right)}{dp} \Pi \left(p', \xi', p; \xi\right) f_1 \left(\mathbf{p}'\right) \\ - \frac{1}{2} n_b \delta \left(\mathbf{p}\right) \int d^3 p_1 v_1 \sigma_M \left(p_1\right) f_1 \left(\mathbf{p}_1\right) - \frac{1}{2} n_b v \sigma_M \left(p\right) f_1 \left(\mathbf{p}\right)$$

• Ensures energy and momentum conservation from large-angle collisions

Conservative Large-Angle Collision Operator

- Large-angle collisions often incorporated -0.2 Secondary via a knock-on "source" electron Primaries evolved by Fokker-Planck • -0.4 collision operator IJ -0.6 Leads to inconsistent formulation \Leftrightarrow large-• Primary angle scattering of primary electrons not -0.8 accounted for Runaway region 2 $\gamma - 1$
- Redistribution of primaries can be accounted for by considering complete form of linearized Boltzmann collision operator:

$$\frac{\partial f_e}{\partial t}\Big|_{LA} = \frac{n_b}{2\pi p^2} \int d^3 p' v' \frac{d\sigma_M \left(p', p\right)}{dp} \Pi \left(p', \xi', p; \xi\right) f_1 \left(\mathbf{p}'\right)$$

$$-\frac{1}{2} n_b \delta \left(\mathbf{p}\right) \int d^3 p_1 \sigma_1 \sigma_M \left(p_1\right) f_1 \left(\mathbf{p}_1\right) - \frac{1}{2} n_b v \sigma_M \left(p\right) f_1 \left(\mathbf{p}\right)$$

• Ensures energy and momentum conservation from large-angle collisions

Back Reaction onto Primary Electrons

Back Reaction onto Primary Electrons

Avoiding Double Counting Collisions

 Addition of down scattering terms can result in double counting collisions

Avoiding Double Counting Collisions

- Addition of down scattering terms can result in double counting collisions
- The choice of an intermediate cutoff angle can be constrained by noting:
 - 1. The large-angle collision operator assumes the thermal electron population to be cold:

$$m_e c^2 \left(\gamma_{min} - 1\right) \gg m_e v_{Te}^2 / 2$$

2. Only secondary electrons whose energy is greater/comparable to the X point location can runaway:

$$\gamma_{min} - 1 < \gamma_X - 1$$

• Center-of-mass scattering angle χ_{min}^{LA} related to γ_{min} by: $\sin^2 \frac{\chi_{min}^{LA}}{2} = \frac{\gamma_{min} - 1}{\gamma - 1}$

Modified Coulomb Logarithm

- Introduction of additional cutoff angle modifies Coulomb logarithm used in Fokker-Planck equation
- The drag coefficient in the Fokker-Planck equation is proportional to:

 ΔLA

$$\frac{\langle \Delta p \rangle}{\Delta t} \sim \int_{\chi_{min}}^{\chi_{min}} d\chi \sin \chi \sin^2 \frac{\chi}{2} \frac{d\sigma_m}{d\Omega} \sim \ln \left[\frac{2}{\chi_{min}} \sin \left(\chi_{min}^{LA} / 2 \right) \right] + \mathcal{O}\left(1 \right)$$

• Coulomb logarithm reduced by a factor:

$$\ln\left[\sqrt{2}\sin\left(\chi_{min}^{LA}/2\right)\right] \le 0$$

• Leads to a significant reduction of Coulomb logarithm used in Fokker-Planck equation (10-20%)

Sensitivity to Intermediate Cutoff

- Necessary to assess the sensitivity of the avalanche growth rate to the intermediate cutoff angle [$\chi_{min}^{LA} = \chi_{min}^{LA} (\gamma_{min})$]
- Broad regime of insensitivity evident:
 - For γ_{min} too large, the avalanche growth rate underestimated ⇔ incorrectly omits secondary electrons
 - Formalism invalid for energies comparable to the thermal energy

Contrasting Current Model with Previous Model

 Addition of conservative large-angle collision operator + modified Coulomb logarithm reduces avalanche growth rate

Contrasting Current Model with Previous Model

- Addition of conservative large-angle collision operator + modified Coulomb logarithm reduces avalanche growth rate
- Useful to identify which additional physics has the strongest impact on avalanche growth rate:
 - Consider additional case with $\ln \Lambda = \ln \Lambda_{rel}(p)$, but without conservative large-angle collision operator
 - Conservative large-angle collision operator has a modest impact on avalanche growth rate once double counting constraint is accounted for!

- Secondary Source + $\ln \Lambda = \text{const}$
- Boltz. + $\ln \Lambda_{rel} \left| \ln \left[\sqrt{2} \sin \left(\chi_{min}^{LA} / 2 \right) \right] \right|$
- -- Secondary Source + $\ln \Lambda_{rel}(p)$

Impact of Large-Angle vs. Small-Angle Collisions

- Use of conservative large-angle collision operator involves a tradeoff:
 - 1. Introduces additional downscattering of primary electrons
 - To avoid double counting, Coulomb logarithm is reduced by:

$$\ln \Lambda = \ln \Lambda_{rel} - \left| \ln \left[\sqrt{2} \sin \left(\frac{\chi_{min}^{LA}}{2} \right) \right] \right|$$

- Both modifications scale with $1/\ln\Lambda$
 - Leads to modest impact on avalanche growth rate

Avalanche Threshold Well Described by O-X Merger

- O-X merger model of primary distribution can be modified to incorporate a more accurate Coulomb logarithm
- Predicted avalanche threshold in good agreement with O-X merger for a broad parameter range

$$Z = 1 - 10, \ \alpha = \tau_c / \tau_s = 0.025 - 0.3,$$
$$\ln \Lambda_{NRL} = 5 - 20$$

Conclusions

- O-X merger of primary distribution identified as a reliable indicator of avalanche instability runaway vortex necessary to confine runaway electron population:
 - A robust, and highly malleable, analytic model describing the O-X merger of the primary distribution has been developed
- A conservative large-angle collision operator appropriate to the description of runaway electrons has been derived:
 - Systematic procedure for delineating small and large angle collision
 operators developed
- A more comprehensive avalanche model that self-consistently treats large-angle scattering events and incorporates a Coulomb logarithm appropriate for runaway electrons has been derived
 - Significantly modifies the avalanche growth rate and threshold

Relation of Avalanche Threshold to Features of Primary Distribution

- Interested in identifying how the avalanche threshold is correlated with features of the primary distribution function
- We will consider a comparison with two features of the primary distribution:
 - Merger of O-X point ⇔ necessary in order to confine runaway electron population at high energy [Guo et al. 2017]
 - Formation of a pitch-angle averaged bump
 ⇔ prominent role in attractor picture [Aleynikov-Breizman 2014]

 $1-10, \ \alpha = \tau_c/\tau_s = 0.05 - 0.3$

 Avalanche threshold most closely correlated with O-X merger over a broad range of parameters:

