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Motivation

@ Damage of runaways to plasma-facing components is determined by runaway

current (jre ~ engrgc) and runaway energy & = ymc?.

@ For given jrp (essentially ngg), higher runaway energy (larger v) leads to

> higher heat load (unit area) — melting, ablation, etc
> deeper heat load deposition (longer stopping range) — unexpected subsurface
damage.

Hard X-ray intensity

Time(s)
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(a) Be melting by RE in JET (G. Matthews 2016 Phys. Scr.)
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Mitigation strategy

@ Can we limit RE energy under a few MeV to control the extent of damage?

Physics basis: RE energy is determined by runaway vortex in momentum space
~ E?B7?n~!. [Guo, McDevitt, Tang, PPCF (2017)]

Approach: Phase-space engineering of runaway electrons by manipulating the
runaway vortex.

* This talk focuses on externally injected high-frequency electromagnetic waves
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Runaway vortex is a robust feature in momentum
space

@ The Fokker-Planck equation can be written in a conservative form
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@ A runaway vortex forms around the O point where I, =T'¢ = 0.
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Runaway vortex — runaway energy distribution

distribution function phase space flux(E=3.0)
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FE =3.0,a=0.2,Z =1. The red curve corresponds to zero energy flux. Results
computed with LAPS-RFP code (LANL).

@ The spread of RE distribution in both energy and pitch-angle is associated
with the phase-space vortex;

@ A separatrix (X point) in phase-space separates RE into local and global
circulating populations;

@ Topological change (runaway vortex is present or not) is crucial for RE
avalanche growth [Talk by C. Mcdevitt, this morning];
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O/X merging — avalanche threshold

@ At po > v/ E/a, an expression is derived for O point’s energy [Guo-PPCF17]

_ (E+a)(E-1)
po—\/§ (1+Z)O( )

@ The energy of X point can also be modeled by
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@ Avalanche threshold electric field is determined by the merging of O and X
points. (McDevitt talk this morning)
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Z increases — po decreases & px increases

@ At po > v/ E/a, an expression is derived for O point’s energy [Guo-PPCF17]
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@ The energy of X point can also be modeled by
1+ (1+2)/2v2
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Reduce pp by enhancing pitch-angle diffusion

@ Runaway vortex forms around an O point where I', = T's = 0.

@ Approximate pitch-angle diffusion: ~ (V2A&,) 71 with T, (AE,) =0
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Enhance scattering via wave-particle interaction
@ Runaway vortex forms around an O point where I', = T's = 0.
@ Approximate pitch-angle diffusion: f“nf ~ (V2A&,) "t with T,(AE,) =0

1—|—p

r, - [(—5) (1-¢ )} f

_ 2 _oPepyrEZ 08y OF

—0.80 —- ‘ —
— I,=0
_o0.85 _ Ffi"(Zil) | @ Whistler wave is a good candidate
L 0= for pitch-angle scattering of
,—0.90 relativistic electrons [Lyon JPP1971;

Guo PRL2012]
_0.95 ] @ We can use it to control runaway

\ energy!?

5 10 15 20 25 30
p/mec

runaway electrons 7/23

-1.00




Capture wave-particle interaction with quasilinear

diffusion

@ In general, the relativistic quasilinear diffusion of electromagnetic waves can
be written as [Lerche POF68, Lyons JPP71]
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@ The diffusion coefficients (]D) = Dyg,) are
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> w normalized to wee, k to wee/c, t to 7e;
> For ITER-like plasma, wpeTe ~ 10'% and wpe ~ wee
» The perturbation energy density normalized to electron inertial energy density
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Whistler wave dispersion and resonance condition

@ Whistler waves are effective in inducing pitch-angle scatterings of electrons in
space [Kennel& Engelmann PF66] and laboratory [Guo PRL12] plasmas;
@ For we; € w K Wee, Weelk||/k| > w, a simple dispersion for whistler wave

’UA Wee

W = k|]€H|

> ”A “ee ~ ] (ratio between magnetic and electron inertial energy densities) for
ITER plasma
@ Two primary cyclotron resonances:

» n = —1, normal Doppler resonance [Stix WIP83, Davidson BPP92]
wir — ko =47 =0
» n =1, anomalous Doppler resonance [Fiilop POP06, Aleynikov NF15]
wir = kyuy+97" =0
@ Assume a spectrum with a fixed k; and a narrow band of k||, so that
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where fd?’kSi,k = &p, and only consider the primary harmonics n = +1;
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Chopping the runaway vortex
@ No wave, F = 3.0E,, a = 0.2, v; = 0.1¢, a long high-energy tail forms;
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Chopping the runaway vortex
@ No wave, F = 3.0E,, a = 0.2, v; = 0.1¢, a long high-energy tail forms;

distribution function 0 fv
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@ ldea: locate the resonance to the
left of O point & at low enough
energy — chopping the vortex to
kill high-energy runaways
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Normal Doppler resonance is preferred
@ Normal Doppler resonance, ko = 0.2,k1¢ = 0.1, = 1072, Ak = 0.05
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@ Anomalous Doppler resonance, ko = —0.2, k10 = 0.1, = 1072 Ak = 0.05
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the anomalous Doppler resonance, so the former is preferred for our purpose;
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Whistler waves can limit the RE energy!
o With wave, kg = 0.2,k10 = 0.1, Ak = 0.05,& = 5 x 10717,

distribution function fv

ase space flux(E=3.0)

A

@ The long high-energy runaway
tail above ~ 2MeV is removed
by the resonance;
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Whistler waves can limit the RE energy!
o With wave, kg = 0.2,k10 = 0.1, Ak = 0.05,& = 5 x 10717,

distribution function fv
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@ The long high-energy runaway
tail above ~ 2M eV is removed
by the resonance;

@ A new vortex is created at lower
energy below the center of
resonance due to whistler waves;
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Reduce resonance energy — the new vortex shrinks
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@ Pushing the resonance to lower energy (kjo = 0.3,0.4,0.5,0.6) — lower
energy/higher pitch O point & vortex volume decreases;
@ The X point moves to higher pitch quickly once the resonance is close to it;
@ The new vortex eventually disappears when O/X points merge;




Reduce resonance energy — the new vortex shrinks
phase space flux(E=3.0
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@ Pushing the resonance to lower energy (kjo = 0.3,0.4,0.5,0.6) — lower
energy/higher pitch O point & vortex volume decreases;
@ The X point moves to higher pitch quickly once the resonance is close to it;
@ The new vortex eventually disappears when O/X points merge;
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vortex's volume decreases; Don't overdo it!

Resonance energy controls the RE distribution

runaway electrons

@ Runway electrons start to accumulate in the original vortex again as the new
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Dependence on magnetic field strength

@ The synchrotron damping parameter o oc B2n =1
o Scan o = 0.2,0.1,0.05, kjp = 0.2, k1o = 0.1, = 5 x 101°, Ak = 0.05
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@ Since the synchrotron damping is proportional to apy(1 — £2), the O point
energy only increases weakly with /a;

runaway electrons 15/23



Chopping the vortex during avalanche growth

@ Using chiu's avalanche source [Chiu NF98], snapshot at J,.. >~ 2.5M A;
@ Unmitigated avalanche shows a long high-energy tail;

ion function 10! 1 (t) = neg
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The mechanism works during avalanche growth!
® Whistler wave, kjg = 0.2,k10 = 0.1, Ak = 0.05,& =5 x 10717;

fon function

fv

@ A new vortex is created at lower
energy below the center of
resonance due to whistler waves;

@ Avalanche electrons can be
limited to lower energy by wave
injections;
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Reduce resonance energy — the new vortex shrinks

@ Pushing the resonance to lower energy (kjo = 0.3,0.4,0.5,0.6) — lower
energy/higher pitch O point, vortex volume decreases;

@ Runway electrons start to accumulate in the original vortex again as the new
vortex's volume decreases; Don't overdo it!




Resonance energy controls the

distribution function
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@ Pushing the resonance to lower energy (kjo = 0.3,0.4,0.5,0.6) — lower
energy/higher pitch O point, vortex volume decreases;
@ Runway electrons start to accumulate in the original vortex again as the new
vortex's volume decreases; Do not overdo it!
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The avalanche growth rate is affected

@ The low energy vortex is still present during avalanche, and keeps a large
population of runaways at relatively low energy ( MeV);

@ The growth rate reaches a minimum near a particular ko = 0.3 with given
parameters;

@ The whistler waves can be applied to lift the avalanche threshold electric field;
@ The vortex appears at larger pitch which may be favorable in tokamak
geometry where trap electrons can not runaway;
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Conclusion

@ The vortex is a local circulation of runaway electrons in momentum-space,
which results from the competition between the parallel electric field
acceleration, the Coulomb collision and the radiational damping force.

@ The vortex determines the energy distribution of runaway electrons, and
governs the threshold of avalanche growth;

@ Pitch-angle diffusion due to Coulomb collisions alone becomes ineffective at
relativistic energy > MeV, and thus the vortex extends to tens of MeV
even with moderate electric fields;

@ A narrow spectrum of small amplitude whistler waves (6B < 10~4By) can
effectively enhance the momentum scatterings in the MeV energy range
through the normal Doppler cyclotron resonance. A new vortex forms below
the peak of resonant energy ~ MeV;

@ By properly choosing the wave (thus the resonance), the runaway electrons
can be limited to below a few MeV in the presence of avalanche growth;

@ Future work: the new vortex also appears at higher pitch, so the toroidal
effect (finite trap-region) becomes very important;
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Enhanced diffusion =- local “increase” of Z
@ For simplicity, we can consider the pitch-angle diffusion alone;
@ The O point is where I';, = 0 and I's = 0 [Guo PPCF17]

L= [(—&)E~Cr—apy(1-€)] f
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phase space flux(E=3.0
N\

@ The X point is not affected as long as
the resonance is away from it;

@ The wave induced pitch-angle
diffusion corresponds to a local
increase of Z near the resonance
(1 - ~6.5);
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Energy/cross diffusions modify the O point location

@ Energy and pitch-angle fluxes [Guo PPCF17]
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1+Z2~v0 0
Fe=—-(1-¢) <Ef - a§5f+7%8—§+%8—§)

@ From left to right: only Dgg, Deg + Dpp, Dee + Dy + Dpe

phase space flux(E=3.0)

@ Both energy and cross diffusions introduce additional energy flux, so the O
point moves slightly to larger energy and higher pitch;




Energy/cross diffusions modify the O point location
@ Energy and pitch-angle fluxes [Guo PPCF17]
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@ Both energy and cross diffusions introduce additional energy flux, so the O
point moves slightly to larger energy and higher pitch;
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Energy/cross diffusions modify the O point location
@ Energy and pitch-angle fluxes [Guo PPCF17]
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@ From left to right: only D¢g, Deg + Dpp, Dee + Dy + Dpe

@ Both energy and cross diffusions introduce additional energy flux, so the O
point moves slightly to larger energy and higher pitch;




