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Relevance and terminology
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Term Explanation

Correct 

positive

Correct prediction of a 

disruptive shot

False 

positive

Non disruptive shot 

misqualified as 

disruptive

Predictor Algorithm which predicts 

disruptions

Training 

data

Data used for training a 

predictor

Test data Data used solely for 

analyzation purposes to 

validate results
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• Hard physics approach

• Known empirical limits (Greenwald limit etc.)

• Statistical analysis ( de Vries, Gerhardt etc)

• Machine learning prediction

• Complicated algorithms

Neural networks etc.

• White box algorithms less used

Current research
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• Ensemble methods are used

• Regression tree for a classification problem

Ensemble Method – Regression algortihm
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• Ensemble methods are used

• Regression tree for a classification problem

• Disruptivity created using sigmoid function

(transition at 250ms before disruption)

Ensemble Method – Regression algortihm
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Data used

• 1130 shots (630 disruptive)

226000 frames are created
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Data used

• 1130 shots (630 disruptive)

226000 frames are created

• 29 plasma parameters

Of which 22 variables are derived
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Data used

• 1130 shots (630 disruptive)

226000 frames are created

• 29 plasma parameters

Of which 22 variables are derived

• Delay of signals by 25 ms (except Ip)
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Creation of prediction
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Decision tree forest predictor
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Creation of prediction
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Decision tree forest predictor Disruptivity over time
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Creation of prediction
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Decision tree forest predictor Disruptivity over time

Prediction is made using a threshold
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Train each
predictor on 
training data

Make 
predictions on 

test data

Obtain results 
and interpret 

them

Comparing of 4 predictor algorithms
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Bagging

Random Forest

Extremely Randomized Forest

Ada - Boost



Interpretation of results
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Results
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Results
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Algorithm Ada-

Boost

Extremely

Randomized

Forest

Random

Forest

Bagging

Correct positives ≈ 90% 88% 91% 90% 91%

False positives 2.1% 2.4% 0.7% 0.88%

Results
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Importance of plasma parameters
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• Disruption prediction using NSTX data

• Increasing robustness for missing data

• Disruption prediction on high Ip using low Ip training data

• Test and develop approach to create an predictor for 

future experiments

(such as ITER)

Future work
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Future work: NSTX - data

Using  same plasma parameters as Gerhardt et al

Trying to reproduce and maybe improve results

Robustness for missing signals
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Future work: Low Ip to High Ip
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Future work: Low Ip to High Ip
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• Created a functioning disruption predictor on DIII-D after comparing and 

testing 4 different machine learning algorithms. 

• A disruption predictor for NSTX using machine learning is under 

development.

• A low to high plasma current approach is developed to predict high plasma 

current disruptions.

• Further study should give more insight in a predictor for future reactors such 

as ITER. Both NSTX and DIII-D predictors help in this.

Concluding - Summary
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Thanks for you attention!
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