Deep Learning Acceleration of Progress Toward Delivery of Fusion Energy

William M. Tang

Princeton University/Princeton Plasma Physics Laboratory (PPPL)

THEORY & SIMULATION OF DISRUPTIONS WORKSHOP (TSDW-2017)

Princeton Plasma Physics Laboratory Princeton, NJ

July 17-18, 2017

Co-authors: Julian Kates-Harbeck, Alexey Svyatkovskiy, Kyle Felker, Eliot Feibush, Michael Churchill

SITUATION ANALYSIS

Most critical problem for MFE: <u>avoid/mitigate large-scale major disruptions</u>

•<u>Approach</u>: Use of big-data-driven statistical/machine-learning (ML) predictions for the occurrence of disruptions in EUROFUSION facility "Joint European Torus (JET)"

•<u>Current Status:</u> ~ 8 years of R&D results (led by JET) using Support Vector Machine (SVM) ML on <u>zero-D</u> time trace data executed on CPU clusters yielding ~ reported success rates in mid-80% range for JET 30 ms before disruptions , BUT > <u>95% with</u> false alarm rate < 3% actually needed for ITER (Reference – P. DeVries, et al. (2015)

Princeton Team Goals include:

(i)improve physics fidelity via development of new <u>ML multi-D, time-dependent</u> <u>software including better classifiers;</u>

(ii)develop <u>"portable"</u>(cross-machine) predictive software beyond JET to other devices and eventually ITER; and

(iii)enhance execution speed of disruption analysis for very large datasets

→ <u>development & deployment of advanced ML software via Deep Learning</u> <u>Recurrent Neural Networks</u>

Challenges & Opportunities

Higher Dimensional Signals

- •At each timestep: **arrays** instead of **scalars**
- •All as a function of ρ (normalized flux surface)
- •Examples:
 - -1D Current profiles
 - -1D Electron temperature profiles
 - -1D Radiation profiles

Mazon, Didier, Christel Fenzi, and Roland Sabot. "As hot as it gets." Nature Physics 12.1 (2016): 14-17.

Machine Learning Workflow

JET Disruption Data

			_				
	# Shots	Disruptive	N	ondisruptive	Totals		
	Carbon Wall	324	4029		4353		
	Beryllium Wall (ILW)	185	1(036	1221		
	Totals	509	50	65 5574		4	
	Sample 7 Signals of zero-D time traces (07)			Data Size (G	SB)		
	Plasma Current			1.8 1.8			
	Mode Lock Amplitude						
	Plasma Density			7.8		ea	
	Radiated Power			30.0		→ Well amo	
•	Total Input Power			3.0			
	d/dt Stored Diamagnetic Energy			2.9		dimen	
	Plasma Internal Inductance			3.0			

JET produces ~ Terabyte (TB) of data per day

~55 GB data collected from each JET shot

→Well over 350 TB total amount with multidimensional data yet to be analyzed

Deep Recurrent Neural Networks (RNNs): Basic Description

- "Deep"
 - **Hierarchical representation** of complex data, building up salient features automatically
 - Obviating the need for hand tuning, feature engineering, and feature selection
- "Recurrent"
 - Natural notion of time and memory \rightarrow i.e., at every time-step, the output depends on
 - Last Internal state "s(t-1)" Recurrence!
 - Current input x(t)
 - The internal state can act as memory and accumulate information of what has happened in the past

$$\begin{array}{c} \text{Internal} \\ \textbf{State} \\ \textbf{State} \\ \textbf{M}_{t} = W_{out}s_{t} \\ \textbf{M}_{t} = M_{out}s_{t} \\ \textbf$$

Image adapted from: colah.github.io

FRNN ("Fusion Recurrent Neural Net") Code Performance (ROC Plot)

RNNs: HPC Innovations Engaged

GPU training

•Neural networks use dense tensor manipulations, efficient use of GPU FLOPS

•Over 10x speedup better than multicore node training (CPU's)

Distributed Training via MPI

Linear scaling:

•Key benchmark of "time to accuracy": we can train a model that achieves the same results nearly N times faster with N GPUs Scalable

to 100s or >1000's of GPU's on Leadership Class Facilities

•TB's of data and more

•Example: Best model training time on full dataset (~40GB, 4500 shots) of 0D signals training

- SVM (JET) : > 24hrs
- RNN (20 GPU's) : ~40min

Fusion Recurrent Neural Net (FRNN) Description

- **Python deep learning code** for disruption prediction in fusion (tokamak) experiments
 - Reference: https://github.com/PPPLDeepLearning/plasma-python
- Implements distributed data parallel synchronous RNN training
 - <u>Tensorflow & Theano backends</u> with MPI for communication
 - FRNN code workflow is characteristic of typical distributed deep learning software
 - Core modules:
 - **Models:** Python classes necessary to construct, train, and optimize deep RNN models.
 - **Pre-process:** arrange data into patches for stateful training; normalize
 - **Primitives:** Python objects for key plasma physics abstractions
 - Utils: a set of auxiliary functions for pre-processing, performance evaluation, and learning curves analysis

Scaling Summary

Communication: each batch of data requires time for synchronization

$$T_{sync} \sim log\left(N_{workers}\right)$$

Runtime: computation time

$$T \sim \frac{1}{N} \left(A + B \log(N) \right) = O\left(\frac{\log(N)}{N} \right)$$

Parallel Efficiency

FRNN Scaling Results on GPU's

- Tests on OLCF Titan CRAY supercomputer
 - OLCF DD AWARD: Enabled Scaling Studies on

Titan currently up to 6000 GPU's

Total ~ 18.7K Tesla K20X Kepler GPUs

Tensorflow+MPI

CURRENT PERSPECTIVE

Forecasting disruptions using machine learning is an important application of a **general idea**:

→ Use multi outcome prediction to distinguish disruption types/scenarios

- → Beginning now to move from prediction to active control (including new collaborations on DIII-D – R. Buttery, T. Strait, N. Logan, R. Nazikian, …..)
- → Increasingly large and diverse data sets require building <u>scalable systems to take advantage of leadership class</u> <u>computing facilities</u>

Fusion Deep Learning (FRNN) Technical Summary

- FRNN \rightarrow a distributed data-parallel approach to train deep neural networks (stacked LSTM's);
- Replica of the model is kept on each "worker" → processing different minibatches of the training dataset in parallel;
- Results on each worker are combined after each <u>epoch</u> using MPI;
- Model parameters are synchronized via parameter averaging \rightarrow <u>with</u> <u>learning rate adjusted after each epoch to improve convergence</u>
- **Stochastic gradient descent (SGD)** used for large-scale optimization with parallelization via mini-batch training to reduce communication cost.
- → Challenge: scaling studies to examine if <u>convergence rate saturates/</u> <u>decreases with increasing mini-batch size (to thousands of GPU's).</u>
- → Targeted Large HPC Systems with P-100's for Performance Scaling Studies: (1) "PIZ-DAINT" Cray XC50 @ CSCS (Switzerland) with > 4K GPU'S; (2) "SATURN V" @ NVIDIA with ~ 1K GPU's; (3) "TSUBAME 3" @ TITECH with ~ 3K GPU's; & (4) "SUMMIT-DEV" @ OLCF.

Fusion Big Data ML/DL Application Summary

Fusion Energy Mission:

- -- <u>Accelerate demonstration of the scientific & technical</u> <u>feasiblity of delivering Fusion Power</u>
- -- Most critical associated problem is to avoid/mitigate large-scale major disruptions.

ML Relevance to HPC:

- -- <u>Rapid Advances</u> on development of predictive methods via large-data-driven "machinelearning" statistical methods
- -- <u>Approach Focus:</u> <u>Deep Learning/Recurrent Neural Nets (RNNs)</u>
- -- <u>Significance</u>: Exciting alternative predictive approach to "hypothesis-driven/first principles" exascale predictive methods

-- <u>Complementarity</u>: Physics-centric path-to-exascale HPC needed to introduce/establish improved Supervised ML Classifiers with associated features

• Associated Challenge:

→ Improvements over zero-D SVM-based machine-learning needed to achieve > 95% success rate, <5% false positives at least 30 ms before disruptions -- with portability of software to ITER via enhanced physics fidelity (capturing multi-D) with improvement in execution time enabled by access to advanced HPC hardware (e.g., large GPU systems).