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SITUATION ANALYSIS

Most critical problem for MFE: avoid/mitigate large-scale major disruptions

Approach: Use of big-data-driven statistical/machine-learning (ML) predictions for the
occurrence of disruptions in EUROFUSION facility “Joint European Torus (JET)’

Current Status: ~ 8 years of R&D results (led by JET) using Support Vector Machine
(SVM) ML on zero-D time trace data executed on CPU clusters yielding ~ reported
success rates in mid-80% range for JET 30 ms before disruptions , BUT > 95% with
false alarm rate < 3% actually needed for ITER (Reference — P_DeVries, et al. (2015)

‘Princeton Team Goals include:

(i)improve physics fidelity via development of new ML multi-D, time-dependent
software including better classifiers;

(il)develop “portable” (cross-machine) predictive software beyond JET to other
devices and eventually ITER; and

(ii)enhance execution speed of disruption analysis for very large datasets

- development & deployment of advanced ML software via Deep Learning
Recurrent Neural Networks




Challenges & Opportunities
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Machine Learning Workflow

Identif Preprocessin i
Signalg anpd feature ? Normalization Hy:r::'“m Use m?d?I for
* Classifiers extraction tuning prediction
All data placed on appropriate
Princeton/PPPLDL numerical scale ~ O(1) Apply ML/DL software on
predictions now advancing e.g., Data-based with al new data
to multi-D time trace signals divided by their
signals (beyond zero-D) standard deviation
Measured sequential data * All available data analyzed;
arranged in patches of * Train LSTM (Long Shqrt Term
equal length for training Memory Network) iteratively;

» Evaluate using ROC (Receiver
Operating Characteristics) and
cross-validation loss for every
epoch (equivalent of entire data
set for each iteration)



JET Disruption Data

# Shots Disruptive Nondisruptive | Totals
Carbon Wall | 324 4029 4353 JET produces N
\?Vel’l)I/”iILIi\r/nV 185 1036 1221 Terabyte (TB) Of
all 1w data per day
Totals 509 5065 5574
Sample 7 Signals of zero-D time | Data Size (GB)
traces (07)
Plasma Current 1.8 ~99 GB data
Mode Lock Amplitude 1.8 CO”f]Cj(qu_frﬁ”l
Plasma Density 7.8 eac S1o
Radiated Power 30.0
->Well over 350 TB total
Total Input Power 3.0 . p
_ _ amount with multi-
d/dt Stored Diamagnetic Energy 2.9 dimensional data yet to
Plasma Internal Inductance 3.0 be analyzed




Deep Recurrent Neural Networks (RNNs): Basic Description

e “Deep”
o Hierarchical representation of complex data, building up salient features
automatically
o Obviating the need for hand tuning, feature engineering, and feature selection
e “Recurrent”
o Natural notion of time and memory - i.e., at every time-step, the output depends on
m Last Internal state “s(t-1)” Recurrence!
m Currentinput x(t)
o The internal state can act as memory and accumulate information of what has
happened in the past
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FRNN (“Fusion Recurrent Neural Net”) Code Performance (ROC Plot)

Performance Tradeoff: Tune True Positives (good: correctly caught disruption) vs. False
Positives (bad: safe shot incorrectly labeled disruptive).
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RNN Data:

e Testing 1200 shots
from Jet ILW
campaigns (C28-C30)

e All shots used, no
signal filtering or
removal of shots

|| Jet SVM* work:

e 990 shots from same
campaigns

e Filtering of signals,
ad hoc removal of
shots with abnormal
signals

e TP 80 to 90%, FP 5%
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*Vega, Jesus, et al. "Results of the
JET real-time disruption predictor in
the ITER-like wall campaigns." Fusion
Engineering and Design 88.6 (2013):
1228-1231.




RNNs: HPC Innovations Engaged

GPU training

eNeural networks use dense tensor manipulations, efficient use of GPU FLOPS
eOver 10x speedup better than multicore node training (CPU’s)

Distributed Training via MPI
Linear scaling:
eKey benchmark of “time to accuracy”. we can
train a model that achieves the same results
nearly N times faster with N GPUs
Scalable
eto 100s or >1000’s of GPU’s on Leadership
Class Facilities
oTB’s of data and more
eExample: Best model training time on full
dataset (~40GB, 4500 shots) of 0D signals
training

o SVM (JET) : > 24hrs

o RNN (20 GPU’s) : ~40min
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Fusion Recurrent Neural Net (FRNN) Description

 Python deep learning code for disruption prediction in fusion (tokamak)
experiments

— Reference: https://github.com/PPPLDeepLearning/plasma-python
 Implements distributed data parallel synchronous RNN training

— Tensorflow & Theano backends

with MPI for communication \

— FRNN code workflow is characteristic v r

of typical distributed deep learning software

— Core modules:

* Models: Python classes necessary to construct, train, t h 8 a n O
and optimize deep RNN models.

* Pre-process: arrange data into patches for stateful training; normalize
* Primitives: Python objects for key plasma physics abstractions

« Utils: a set of auxiliary functions for pre-processing, performance evaluation, and
learning curves analysis




Scaling Summary

Communication: each batch of data requires time for synchronization

Tsync ~ 109 (Nworkefrs]

Runtime: computation time
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FRNN Scaling Results on GPU’s

* Tests on OLCF Titan CRAY supercomputer
— OLCF DD AWARD: Enabled Scaling Studies on
Titan currently up to 6000 GPU’s
— Total ~ 18.7K Tesla K20X Kepler GPUs

Tensorflow+MPI
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CURRENT PERSPECTIVE

Forecasting disruptions using machine learning is an important
application of a general idea:

-> Use multi outcome prediction to distinguish disruption
types/scenarios

—> Beginning now to move from prediction to active control
(including new collaborations on DIII-D — R. Buttery, T. Strait, N. Logan,

R. Nazikian, .....)

-> Increasingly large and diverse data sets require building
scalable systems to take advantaqe of leadership class
computing facilities




Fusion Deep Learning (FRNN) Technical Summary

* FRNN - a distributed data-parallel approach to train deep neural networks

(stacked LSTM’s);

* Replica of the model is kept on each “worker” = processing different mini-

batches of the training dataset in parallel;

* Results on each worker are combined after each epoch using MPI;

 Model parameters are synchronized via parameter averaging > with

learning rate adjusted after each epoch to improve convergence

» Stochastic gradient descent (SGD) used for large-scale optimization with

parallelization via mini-batch training to reduce communication cost.

—> Challenge: scaling studies to examine if convergence rate saturates/
decreases with increasing mini-batch size (to thousands of GPU’s).

- Targeted Large HPC Systems with P-100’s for Performance Scaling
Studies: (1) “PIZ-DAINT” Cray XC50 @ CSCS (Switzerland) with > 4K
GPU'S; (2) “SATURN V" @ NVIDIA with ~ 1K GPU’s; (3) “TSUBAME 3" @
TITECH with ~ 3K GPU’s; & (4) “SUMMIT-DEV” @ OLCF.




Fusion Big Data ML/DL Application Summary

* Fusion Enerqy Mission:
-- Accelerate demonstration of the scientific & technical feasiblity of delivering Fusion Power
-- Most critical associated problem is to avoid/mitigate large-scale major disruptions.

* ML Relevance to HPC:

-- Rapid Advances on development of predictive methods via large-data-driven “machine-
learning” statistical methods

-- Approach Focus: Deep Learning/Recurrent Neural Nets (RNNs)

-- Significance: Exciting alternative predictive approach to ‘hypothesis-driven/first
principles” exascale predictive methods

-- Complementarity: Physics-centric path-to-exascale HPC needed to introduce/establish
improved Supervised ML Classifiers with associated features

» Associated Challenge:

— Improvements over zero-D SVM-based machine-learning needed to achieve > 95%
success rate, <b6% false positives at least 30 ms before disruptions -- with portability of software
to ITER via enhanced physics fidelity (capturing multi-D) with improvement in execution time
enabled by access to advanced HPC hardware (e.q., large GPU systems).




