R&D strategy for reliable disruption mitigation in ITER

M. Lehnen ITER Organization

Disclaimer:

ITER is the Nuclear Facility INB no. 174. This presentation explores physics processes during the plasma operation of the tokamak when disruptions take place; nevertheless the nuclear operator is not constrained by the results presented here. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

Developed DMS R&D plan based on input received at the DMS workshop 2017

- Urgent short term R&D to conclude on baseline DMS design (Shattered Pellet Injection), including JET SPI project
- Medium term R&D to address baseline mitigation performance (incl. tokamak experiments)
- Long term R&D on alternative technology or mitigation strategy
- □ DMS Task Force established for implementation
- Assessment of ITER DMS injection requirements and allocation of port plugs

□ Scope of the DMS TF activity on the R&D plan:

- Physics research to validate baseline DMS concept (SPI) in experiments in present machines and analysis + modelling to assess projections to ITER
- R&D to address future upgrades or alternative approaches
- R&D leading to industrialization of SPI to reliability needed for asset protection

□ Out of scope:

- ➢ Procurement of the baseline DMS and work related to the change in ITER baseline (MGI → SPI)
- Disruption prediction and avoidance and developments of termination scenarios

DMS R&D plan – overall timeline

DMS R&D plan – baseline R&D timeline & deliverables

Most urgent R&D for the baseline DMS

- Demonstrate that multiple injection is feasible
- Decide on the optimum shard size composition to ensure high assimilation and sufficient core density rise
- \rightarrow Timeline is tight (~ 2 years)
- → Alternative injection techniques to be explored in parallel to show their potential feasibility for ITER

Risk for PFPO-1 for the baseline DMS to fail is considered low (up to 7.5 MA operation, low E_{th})

Most urgent R&D for a later upgrade decision

- Demonstrate runaway avoidance during TQ mitigation
- Validate runaway energy dissipation scheme (second layer)
- Quantify radiation heat loads from TQ flash
- \rightarrow Timeline is longer
- → Alternative injection techniques <u>and</u> mitigation schemes to be explored to show their potential feasibility for ITER

Risk for PFPO-2 (up to 15 MA operation) and FPO (high E_{th} , T decay as RE seed)

DMS R&D plan – baseline SPI

Decision points Priority		Work Plan Description		
	Design	Assessment alternative design on DMS capability (single barrel)		
ED port plug	Design	Neutron streaming down flight line and activation		
allocation	Design	Assess implications of reduced DMS capabilities & additional injection locations.		
	Design	Assess implementation of additional barrels in EP17 or other equatorial ports		
	Design	Assess single containment & separate gas supply		
Gas supply strategy	Design	Assess performance requirements for separate gas supply & impact on DMS ops		
	Design	Assess safety implications of separate gas supply		
	Design	Modelling of multiple injections		
Feasibility of the	Risk	3D MHD modelling to address rad asymmetry & need for tor/pol		
baseline concept	Mitigation	distribution		
	Design	Tokamak experiment with 2+ injectors at different locations w/variable shard size/velocity		

Technology

Modelling/Theory

Decision Points	Priority	Work Plan Description		
	Design	Tokamak experiments with varying quantities of propellant		
SPI technology ready for baseline DMS	Design	Lab test & theoretical R&D to establish understanding of pellet formation process		
	Design	Lab & theory R&D to understand pellet shear-off & acceleration		
	Design	Lab test geometric constraints of all pellet types in funnel/guide tube		
	Design	Optimisation of flight tube design		
	Risk Mitigation	Develop pellet formation integrity monitor		
	Risk Mitigation	Develop & integrate technique to optimise pellet synchronization		
	Operational	Impact of broken pellets on mitigation performance, risk of RE generation		
	Operational	Effect of impurity inflow on pellet integrity		
	Operational	Impact of other gases injected with SPI on mitigation process		

Technology

Modelling/Theory

Decision Points	Priority	Work Plan Description		
	Design	Possible bending angle of shattering section in DFW in UPP		
	Design	Simulations to quantify impact of injection angle on assimilation		
	Design	Impact of bending angle on fragment sizes		
Flight tube front end	Design	Simulation of ablation/assimilation vs shard size/composition		
	Design	Tokamak experiments w/ flexible shard size.		
	Design	Tokamak experiments w/ varying injection angles and ITER shard size distribution		
	Risk Mitigation	Alternative shattering techniques		
	Risk Mitigation	Tokamak exp's with pure gas through SPI		
Establish DMS	Operational	Demonstrate fully automated ITER-like DMS in routine closed-loop operation		
operation strategy				

Technology

Modelling/Theory

DMS R&D plan – baseline performance / upgrade needs

Decision Points	Priority	Work Plan Description		
Upgrade needs	Design	Tokamak Experiments quantifying impact of adding D2 on TQ mitigation efficiency and CQ rate		
	Design	RE energy dissipation: quantify required injection quantities & assess improvement of scheme w/ SPI		
	Design	Theory/modelling to improve understanding of RE energy dissipation for extrapolation to ITER		
	Design	Ip / Z evolution and MHD stability during RE energy dissipation		
	Design	Improve models describing RE generation & avoidance during TQ & early CQ		
	Design	Tokamak experiments testing baseline scheme for RE avoidance w/baseline DMS geometry		
	Operational	Current quench: Develop models to account for all relevant processes for radiative dissipation of magnetic energy & benchmark to XP		
	Operational	Lab/Tokamak Experiments of conditions under which arcing between blankets modules may occur		

Technology

Modelling/Theory

DMS Task Force Structure

- Original port plug allocation on upper ports is kept (3 ports)
- 3 additional drawers in equatorial port plugs to become available:

 in EP8 and EP17, 2 in EP2 (redistribution of diagnostic port plugs and changes in TBM program)
- 8 barrels / drawer possible (design work ongoing)

Provisions planned to allow possible reconfiguration

- Radiation heat loads may require more uniform toroidal distribution
- Safety limit for inflammable gases presently under assessment

□ Captive components:

- Gas Supply Manifold for the DMS (in present configuration)
- Cryogenic supply for possible upgrade in e.g. EP#11 (to be specified)

Port plug integration

Integration of 8 barrels in one drawer of an equatorial port plug

Present Disruption Mitigation Strategy


```
Runaway electron avoidance:
D<sub>2</sub> injection pre-TQ
```

Runaway electron energy dissipation: Ar injection post-TQ

DMS capability needs

□ Required DMS capabilities for TQ, CQ and RE avoidance <u>and</u> mitigation

Pellet diameter		quantity/pellet	quantities required*				
[mm]	species	[particles]	[particles]	# pellets			
Equatorial ports (RE mitigation)							
28.5	Ar	0.9x10 ²⁴	10 ²⁵	12			
28.5	D ₂	1.1x10 ²⁴	10 ²⁵	10			
Equatorial ports (TQ mitigation)							
13.4/16.6/19.7	Ne	1.2/2.3/3.9x10 ²³	5x10 ²²	4 1)			
Upper ports (CQ mitigation)							
13.4/16.6/19.7	Ne	1.2/2.3/3.9x10 ²³	5x10 ²²	<mark>3</mark> 1)			

Most likely solution: 28.5 mm D2 pellets doped with Ne (injection of 10 pellets: 0.5% Ne)

*Numbers based on present knowledge; reduction of uncertainty high priority of DMS R&D plan ¹⁾Number determined by the objective to minimize toroidal radiation peaking

Runaway avoidance through D2 admixture

Presently only simplified models:

- 1D current evolution, but no self-consistent seed mechanism J.R. Martín-Solís et al., Nucl. Fusion 2017
- Hot tail model with self-consistent thermal quench duration from radiation power balance
 P. Aleynikov & B.N. Breizman, Nucl. Fusion 2017

What is needed to move forward:

- Characterise density rise over the entire cross-section and the related RE seed formation
- 3D MHD (island formation, stochasticity)
- Self-consistent ion source from appropriate pellet model
- Self-consistent RE seed mechanism implemented

→ Presentations by P. Parks (last workshop), D. Hu (this workshop), and work by C. Kim (NIMROD)

Runaway avoidance through D2 admixture

- Aleynikov et al.: TQ self-consistent (dE_{th}/dt = P_{rad})
- Addition of D2 reduces final RE current through:
 - Increased radiation by higher n_e (less Ar at same CQ time)
 - Lower E/E_c preventing hot tail acceleration

Runaway avoidance through D2 admixture

JOREK D2 SPI simulation for JET shows non-uniform density rise

NIMROD (C. Kim et al.): 10^{23} Ne atoms, 1/1 kink drives TQ, E_{th} almost fully radiated, RE still confined

\rightarrow Presentation by D. Hu

WG-13 in ITPA MHD is assessing the efficiency of this scheme

Runaway energy dissipation scheme

WG-13 in ITPA MHD is assessing the efficiency of this scheme

Experiments versus modelling / theory*

WG-13 in ITPA MHD is assessing the efficiency of this scheme

Runaway energy dissipation scheme

WG-13 in ITPA MHD is assessing the efficiency of this scheme

- Most urgent physics R&D:
 - Test efficiency of multiple injection (up to 10 pellets for TQ in ITER!)
 - Optimise density rise in the plasma centre (shard size distribution)
- SPI will be available in several devices:
 - DIII-D to continue with SPI (pure Ar injection, eliminate propellant gas)
 - JET ready for operation in November
 - J-TEXT first experiments done
 - KSTAR in planning (two injectors for multiple injection)
 - HL-2A ?
- Diagnostic coverage to be enhanced for code validation and to have quantitative answers (e.g. bolometer coverage, space resolved density measurements)

