Theory and Simulation of Disruption Mitigation

by

Brendan C. Lyons¹

on behalf of the General Atomics Theory and Computational Sciences Group with C.C. Kim², Y.Q. Liu¹, P.B. Parks¹, N.M. Ferraro³, S.C. Jardin³, L.L. Lao¹

¹General Atomics ²SLS2 Consulting ³Princeton Plasma Physics Laboratory

Presented at the 6th Annual Theory and Simulation of Disruptions Workshop Princeton, NJ

July 16th, 2018

Acknowledgments

- US DOE: DE-FG02-95ER54309 & DE-FC02-04ER54698
- SciDACs: CTTS (DE-SC0018109) and SCREAM (DE-SC0016452)
- GA-ITER contract ITER/CT/14/4300001108
- National Energy Research Scientific Computing Center
- R.W. Harvey for GENRAY simulations

Future tokamaks will require disruption mitigation

- Disruptions result in rapid loss of stored plasma energy
 - Thermal quench can melt of plasma-facing components
 - Current quench can produce
 - Damaging wall forces
 - Dangerous runaway electrons
- Impurity injection can mitigate disruptions by radiating stored energy
- Shattered pellet injection (SPI) currently under experimental investigation on several tokamaks

DIII-D shattered pellet injection D. Shiraki, IAEA presentation 2016

Studying of disruption dynamics and mitigation requires multiphysics models

- Simulations, validated against mitigation experiments, are required to project techniques to future devices
- Integrated model is required to capture all relevant physics
 - Magnetohydrodynamics (MHD) for macroscopic evolution of disruption dynamics
 - Atomic physics for ionization and radiation from injected impurities
 - Drift-kinetics for phase-space evolution of runaway electron population
 - Wave-plasma interactions needed to understand runaway electron scattering due to fast waves
- Disparate spatial and temporal scales make numerical modeling particularly challenging

Outline

• Code upgrades for pellet mitigation modeling (CTTS)

- M3D-C1: Lyons, Ferraro, & Jardin
- NIMROD: Kim & Liu
- Ablation models: Parks
- Axisymmetric benchmark between M3D-C1 and NIMROD (CTTS)
 - Lyons, Kim, Liu, Ferraro, & Jardin
- NIMROD shattered-pellet-injection modeling (CTTS & ITER contract)
 - Kim & Liu
- Fast-wave mitigation of runaway electrons (SCREAM)
 - Parks

SciDAC Centers

Code upgrades for pellet mitigation modeling

- M3D-C1: Lyons, Ferraro, & Jardin
- NIMROD: Kim & Liu
- Ablation models: Parks

M3D-C1 & NIMROD are being upgraded to address fundamental disruption mitigation physics

- Full, nonlinear, 3D extended MHD solvers
 - M3D-C1 uses a complete finite-element representation
 - NIMROD uses finite elements in poloidal plane and Fourier modes toroidally
- Both have been coupled to the KPRAD¹ impurity model
 - Low-density, coronal model based on ADPAK rate coefficients
 - Impurity charge states and electron density evolve according to ionization and recombination
 - Thermal energy lost from plasma due to ionization and radiation (line, Bremsstahlung, and recombination)
 - Subcycled much faster than typical MHD time steps

¹D.G. Whyte, et al., Proc. of the 24th Euro. Conf. on Controlled Fusion and Plasma Physics, Berchtesgaden, Germany, 1997, Vol. 21A, p. 1137.

M3D-C1 has been recently coupled to KPRAD

- Four different coupling methods: [1/2] [p/T] equation(s)
 - With single equation, radiation losses split between electrons and ions
 - With two equations, electrons lose energy and ions equilibrate
 - With temperature equation(s), dilution cooling must be explicitly included

$$n_{e} \left[\frac{\partial T_{e}}{\partial t} + \mathbf{v} \cdot \nabla T_{e} + \Gamma T_{e} \nabla \cdot \mathbf{v} \right] = (\Gamma - 1) \left(\eta J^{2} - \nabla \cdot \mathbf{q}_{e} + Q_{ei} - \mathcal{P}_{rad} \right) - T_{e} \left(\frac{\partial n_{e}}{\partial t} + \mathbf{v} \cdot \nabla n_{e} \right)$$
$$n_{ti} \left[\frac{\partial T_{i}}{\partial t} + \mathbf{v} \cdot \nabla T_{i} + \Gamma T_{i} \nabla \cdot \mathbf{v} \right] = (\Gamma - 1) \left(-\nabla \cdot \mathbf{q}_{i} - Q_{ei} - \mathbf{\Pi} : \mathbf{v} \right) - T_{i} \left(\frac{\partial n_{ti}}{\partial t} + \mathbf{v} \cdot \nabla n_{ti} \right)$$

KPRAD updated to split recombination energy

- Ionization converts thermal to potential energy
- Recombination releases thermal (kinetic) and potential energy as radiation
- Potential (~10¹-10³ eV) greatly exceeds kinetic in cold plasma (~10⁰ eV)
- Only kinetic part subtracted from thermal energy

Two temperature equations leads to slower thermal quench

Early-time behavior

- Total-thermal energy and radiation identical to single temperature eq.
- Electron thermal energy drops monotonically without early rise
- Ionization rate less due to decreased electron temperature
- Longer thermal energy tail due to electron-ion equilibration

Ionization

0.4

t (ms)

0.6

0.8

1.0

0.2

1.0

0.5

0.0

Ablation model for Ne-D2 pellets implemented in M3D-C1

 Practical, analytic expression fit to more complex ablation model (Parks)

$$G\left({\rm g/s}\right) = \lambda\left(X\right) \left(\frac{T_e}{2000~{\rm eV}}\right)^{5/3} \left(\frac{r_p}{0.2~{\rm cm}}\right)^{4/3} \left(\frac{n_e}{10^{14}~{\rm cm}^{-3}}\right)^{1/3}$$

 λ is fitting function, depending on molar fraction of D2, X

- M3D-C1 implementation
 - Advance pellet location in time
 - Calculate number of particles ablated and pellet-surface recession at each time step
 - Deposit main ion and/or impurities onto arbitrary spatial distribution (e.g. 2D or 3D Gaussian)

NIMROD is ready to assess viability of shattered-pellet injection

• Single-fluid, resistive MHD model uses single temperature equation

$$n_{tot}\left(\frac{\partial T}{\partial t} + \mathbf{V}\cdot\nabla T\right) = (\Gamma - 1)\left(-p\nabla\cdot\mathbf{V} - \nabla\cdot\boldsymbol{q} + \boldsymbol{Q} - \boldsymbol{\Pi}:\nabla\mathbf{V}\right) - T\sum\frac{\Delta n_{\alpha}}{\Delta t}$$

- $n_{tot} = n_i + n_e + \sum_Z n_Z$ (impurities include neutrals)

- Heat flux, radiation and heating, dilution cooling (ablation and electrons)
- KPRAD radiation/ionization (same as massive gas injection [Izzo NF46 2006])
- Particle-in-cell (PIC) based SPI model recently added
 - Discrete PIC marker represents subset of SPI fragments
 - Initially use simple "pencil beam" model for fragment plume straight line trajectory, uniformly spaced identical particles
 - Easy to modify, extremely flexible
- Ongoing study of both DIII-D and ITER SPI thermal quench
- Beginning SPI validation study with DIII-D experiment

Axisymmetric benchmark between M3D-C1 and NIMROD

– Lyons, Kim, Liu, Ferraro, & Jardin

Fast impurity injection in DIII-D core used as test case

- DIII-D shot 137611 @ 1950 ms 2D, nonlinear, single-fluid Neutral argon or neon impurity deposition No impurities to start Gaussian source: $\frac{dn_z}{dt} = \nu \frac{R_0}{R} \exp \left[-\frac{(R-R_0)^2 + (Z-Z_0)^2}{2\delta^2}\right]$ $-\delta = 0.25 \text{ m} \& v = 10^{23} \text{ m}^{-3} \text{ s}^{-1}$ Constant main ion density: 10²⁰ m⁻³ **Constant diffusivities** Isotropic density, momentum, and thermal diffusivities: 10 m²/s Parallel thermal diffusivity: 10⁶ m²/s
 - Resistivity: 10^{-5} Ohm*m, 7.96 m²/s

•

۲

۲

.

Excellent agreement for argon-injection benchmark

- Codes show near-identical time evolution of
 - Thermal energies
 - Loss power and each component
- Thermal quench time: ~0.6 ms
- Peak radiation: ~0.45 ms
- Ohmic heating
 - Fairly small due to constant resistivity
 - Will increase at end of thermal quench when Spitzer resistivity used: $\eta \sim T^{-3/2}$
 - Spitzer benchmark underway

Good agreement for neon, with some late-time differences

- Quench ~3x slower than argon (~1.8 ms)
- Good agreement between codes observed before 1 ms
 - Radiation/ionization nearly identical
 - Slightly higher thermal energy seen in NIMROD
- Late-time discrepancies under investigation
 - Earlier radiation peaks in NIMROD
 - Personal: possibly due to inclusion of potential energy in recombination power
 - M3D-C1 sees steady decay toward zero, while NIMROD quench has longer tail

NIMROD shattered-pellet-injection modeling – Kim & Liu

SPI simulation of 0.5 kPa·m³ Ne pellet injected into 12.5 MA ITER hybrid discharge

- 128x128 finite-element grid, toroidal modes n=0-5, S~10⁶, Pr~10⁵
- 125 fragments/25 particles, r_0 =1.71 mm, v=500 m/s, Δr_{dep} =40 cm, $\Delta \phi_{dep}$ = π
- (48 hrs + 48 hrs + 48hrs) x 384 processors
- Note dip in internal energy between t=0.4-0.6 ms

Dip coincides with maximum radiation and peak mode activity

- All fragments ablate by 4.5 ms
- 318.5 MJ of thermal energy lost (mostly line radiation)
- MHD dominated by n=1 (single injector)
 - Dip in mode energy coincides with end of ablation
 - Radiation peaks with maximum n=1 kink amplitude
- Core temperature collapses between 4.5 and 5 ms

ITER 15 MA baseline scenario simulation: Double amount of pure-neon SPI reduces TQ time by ~35%

0.5 kPa-m³ 1 kPa-m³

- 0.5 kPa-m³ neon
 - 8 ms incomplete TQ
 - 100% ablation of injected pellet during TQ
- 1 kPa-m³ neon
 - 5 ms TQ
 - ~64% ablation (total 0.64 kPa-m³)
- TQ time traces not very sensitive to assumed plasma resistivity & viscosity

Fast-wave mitigation of runaway electrons

- Parks

Fast-wave injection have been proposed as a means to mitigate runaway electron beams

- Antenna could be used to excite the helicon or whistler waves
 - Cause quasi-linear scattering of the runaway electrons in the perpendicular direction
 - Enhance the synchrotron damping
- <u>Question</u>: Will collisional dissipation in post-disruptive discharge significantly degrade wave energy in the core?
- Can be determined analytically from the perpendicular absorption coefficient $k_{\perp i}$

Fast waves propagation through cold, post-disruptive discharge

- Time-averaged spectral power dissipation rate: $\mathcal{P} = \operatorname{Re}(E^* \cdot J)/2$
- Current density in terms of dielectric tensor: $J = -i\omega(\epsilon I) \cdot E/4\pi$

$$\mathcal{P} = \frac{\omega}{8\pi} \operatorname{Re}(E^* \cdot \epsilon_a \cdot E) \text{ with anti-Hermitian part: } \epsilon_a = \begin{pmatrix} S_{im} & 0 & 0\\ 0 & S_{im} & 0\\ 0 & 0 & P_{im} \end{pmatrix}$$

 $- S_{im} = (v_{ei}/\omega)(\omega_{pe}^2/\omega_{ce}^2)$ $- P_{im} = (v_{ei}/\omega)(\omega_{pe}^2/\omega^2)$ Electron-ion collision frequency is same one appearing in Spitzer's \perp electrical resistivity

•
$$\mathcal{P} = \frac{v_{ei}}{8\pi} \frac{\omega_{pe}^2}{\omega_{ce}^2} \left\{ |E_{\chi}|^2 + \left| E_{\gamma} \right|^2 + \frac{\omega_{ce}^2}{\omega^2} \left| E_{\parallel} \right|^2 \right\}$$
 (assuming $\omega^2 / \omega_{ce}^2 \ll 1$)

• Poynting flux in \perp (or x) direction:

$$S_{\perp} = \frac{c^2}{16c\pi\omega} \Big\{ 2k_{\perp} (|E_y|^2 + |E_{\parallel}|^2) - k_{\parallel} (E_x E_{\parallel}^* + E_x^* E_{\parallel}) \Big\}$$

Dispersion relation and perpendicular absorption coefficient give wave accessibility condition

• Conservation of energy
$$\mathcal{P} = 2k_{\perp im}S_{\perp}$$

$$\frac{\text{Perpendicular}}{\text{absorption coefficient}} \qquad k_{\perp im} = \frac{\nu_{ei}}{2cn_{\perp}} \frac{\omega_{pe}^2}{\omega_{ce}^2} \begin{cases} \frac{1 + \frac{D^2}{\left(n_{\perp}^2 + n_{\parallel}^2 - S\right)^2} + \frac{\omega_{ce}^2 n_{\parallel}^2 n_{\perp}^2}{\omega^2 (P - n_{\perp}^2)^2}}{\frac{D^2}{\left(n_{\perp}^2 + n_{\parallel}^2 - S\right)^2} + \frac{n_{\parallel}^2 n_{\perp}^2}{(P - n_{\perp}^2)^2} + \frac{n_{\parallel}^2}{(P - n_{\perp}^2)^2}} \end{cases}$$

- Cold plasma dispersion relation $\mathcal{D} \equiv de^{\dagger}[nn n^2I + \epsilon_h] = 0$ used to express $n_{\perp}^2(n_{\parallel}^2)$
- Choose $\omega_{ci} \ll \omega \ll \omega_{ce}$
 - Resonance condition for relativistic REs $\omega k_{\parallel}v_{\parallel} l^{\omega_{ce}}/\gamma = 0$
 - DIII-D helicon antenna frequency f = 500 MHz, $B \sim 2$ T, $\gamma \sim 20 50$

$$- n_{||}^{res} = \frac{\omega_{ce}}{\gamma\omega} - 1 \sim 2 - 5$$

• ACCESSIBILITY: for typical DIII-D post-disruption densities $n_{14} > 0.2$ the slow (lower hybrid) wave cannot propagate to core but the fast whistler/helicon wave can

Significant corrections to Bonoli's* perpendicular absorption coefficient for high density cases at low n_{\parallel}

- Good agreement at high n₁ & low density but Bonoli's perturbation method breaks down at low n₁ & high density
 - When n_{\parallel} becomes too large we approach cutoff, $n_{\perp}
 ightarrow 0$, making $k_{\perp im}$ blow up, as indicated in Parks formula

^{*}M. Porkolab, P.T Bonoli, S.C. Chiu in 11th Topical Conf. on RF Power in Plasmas, May 17-19, 1995, Palm Springs, CA PFC/JA-95-30

Lyons TSDW 2018

Initial GENRAY simulation shows wave power is collisionally depleted to 1% at "end point" of ray path

Conclusions

- M3D-C1 and NIMROD are being brought to bear on disruption mitigation problems
 - M3D-C1 radiation and ablation models have been upgraded
 - Successful, cross-code axisymmetric benchmark performed, with extensions and 3D benchmarks underway/planned
 - NIMROD performing SPI simulations for ITER
- Collisional damping in post-disruptive plasmas makes fast-wave mitigation of runaway electrons challenging
- Future work
 - Code validation with and analysis of DIII-D SPI experiments
 - Fast-wave propagation in more-realistic, post-disruptive equilibria

Additional slides

NIMROD used to simulated SPI-induced TQ for ITER-baseline and hybrid scenarios with varying impurity contents

Ne [kPa.m³]	Ne:D2	lp [MA]	r_frag [mm]	S (x10 ⁶)	Kperp[m²/s]	Kpara[m²/s]	kin_vis [m²/s]	mesh	∆t [µs]	τ _{τQ} [ms]	Burnt/ total
0.5	0:1	15	1.71	1.85	10	1010	2x104	96x96	0.2	8	125/125
1	0:1	15	2.15	1.85	10 ²	107	5x10 ³	96x96	0.5	5	75/125
0.5	10:1	15	4.42	1.85	10	1010	2x104	64x72	0.2	4.5	65/125
0.5	10:1	15	4.42	18.5	10	1010	2x104	64x72	0.2	4.5	65/125
0.5	10:1	15	4.42	1.85	10	1010	2x10 ²	64x72	0.2	4.5	75/125
0.5	10:1	15	3.51	1.85	10	1010	2x104	64x72	0.2	4.5	150/250
0.5	1.5:1	15	2.51	1.85	10 ²	107	5x10 ³	96x96	0.5	>6	125/125
0.5	0:1	12.5	1.71	1.62	102	107	5x10 ³	96x96	0.5	>5	125/125

- Fixed plasma resistivity and thermal conductivity coefficients
- 25 PiC markers at V=500 m/s

• n=0-5

Ray path without collisional damping

