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SYNCHROTRON RADIATION ROUTINELY MEASURED TO
INFER RE INFORMATION

Very valuable diagnostic to validate RE models
This motivates the need of accurate synthetic diagnostics

Carbajal @ Sherwood 2017

Examples of measured runaway electrons’ 
synchrotron emission
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IR camera in TEXTOR [K. Wongrach 
et al. Nucl. Fusion 54, 043011 (2014)].

Visible camera in DIII-D [J. H. Yu 
et al. PoP 20, 042113 (2013)].

Visible camera in C-Mod [A. 
Tinguely et al. APS DPP 2016].

Visible camera in EAST [Y. Shi et al. 
Rev. Sci. Instrum. 81, 033506 (2010)].



KORC%(Kine*c%Orbit%Runaway%electrons%Code)%

Orbits'in'ITER'computed'with'KOC8GC%%
Using'VMEC'magne<c'field''

Orbits'in'DIII@D'computed'with'KORC8FO%%
using'JFIT'magne<c'field''

•  State'of'the'art,'unique,'recently'develop'code'to'study'full%orbit%space8dependent%effects''
•  Rela<vis<c'dynamics'of'runaway'electrons'span'a'huge'range'of'scales'10@11'sec'to'10@3@1'sec'

•  KORC%uses%two%levels%of%descrip*on:%
–  KORC8GC%averages'the'fast'gyro@mo<on'allowing'to'compute'long@term'dynamics.'

–  KORC8FO% integrates' the'exact'dynamics' resolving'all' the' scales'allowing' to' compute' short@term'detailed'orbit@
dependent'physics'in'6@D'phase'space.'

•  Both' versions' include' Monte@Carlo' collision' operators' with' background' plasma' and'
impuri<es'as'well'as'synchrotron'radia<on'reac<on'forces.'

•  KORC'can'be'run'with'analy<cal''or'numerically'generated'electromagne<c'fields,'e.g.'VMEC,'
SIESTA,'EFIT,'JFIT'and'NIMROD.'

•  Recent'developments'include'a'synchrotron'radia<on'synthe<c'diagnos<c.'



KORC SYNCHROTRON EMISSION SYNTHETIC DIAGNOSTIC

Computes P (λ, ψ, χ) using the full-orbit information of large
ensembles of RE incorporating the basic camera geometry

the electron intersects the line of sight of that column of pixels.
Here = ( )x x y z, ,i i i i is the position of the ith electron. For the
ith electron seen by the jth column of pixels we calculate the
angle ji j, , which is the angle between the camera position and
the position at which the circle with radius Ri intersects the jth
line of sight. This angle is measured anticlockwise from the solid
red line of figure 12(a). In the second step we identify the row of
pixels that detect the ith electron. This is done by identifying
the row of pixels that the unitary vector n̂i, the direction of
emission of the ith electron, hits when it extends from the
electrons’ position to the plane of the camera detector. Here

= -j f-ˆ ˆ ˆ ˆn x RT Ti i sci j, 0
, ĵT are rigid rotations along the z-axis by

an angle j, and f0 is the azimuthal angle defined by the position
of the particle xi. Once that we have identified which pixels
detect which electrons we compute their contribution to the
measured synchrotron emission using either model for the
angular distribution of the SR of section 2.

ORCID iDs

L Carbajal https://orcid.org/0000-0002-1725-2787

Figure 12. Camera setup in KORC simulations. Panel (a): schematic representation of the camera setup showing the horizontal angle of view
of the camera (blue lines), the main line of sight of the camera (green line), the position of the camera (black square), the synchrotron
emission at the poloidal plane and at the detector plane (a.k.a. pixel plane), and an example of the initial spatial distribution of the simulated
runaway electrons (black dots). Panel (b): zoom of the detector plane of the camera showing an example of the measured synchrotron
emission in a KORC simulation. Panel (c): top view of the camera setup showing some examples of lines of sight of the camera in a KORC
simulation. The toroidal sectors used in figure 11 are highlighted in magenta.
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SYNCHROTRON RADIATION: PASSING PARTICLES

I The total radiation power PT = e2

6πε0c3γ
4v4κ2 depends on the

geometry of the orbit through the curvature

κ =
e

γmev3
|v × (v × B)| =

eB

γmev
sin θ

where B and θ are functions of the particle potion r = r(t).
I Approximating κ assuming θ and/or B constant (as done in

reduced models) can introduce significant errors in PT

(a)$
(b)$

(c)$

Passing E = 30MeV particles in axisymmetric field.



SYNCHROTRON RADIATION: TRAPPED PARTICLES

Scatter plots in the (θ, PR) plane and histograms of number of
runaways with a given pitch angle and a given radiated power.

κ=κθ0Β0

Plots on the right: radiation in poloidal plane for the total, (a),
passing only, (b), and trapped only, (c), runaway electrons.
Axisymmetric magnetic field, E0 = 10 MeV and θ0 = 60o



RUNAWAY ELECTRONS IN THE PRESENCE OF MAGNETIC
ISLANDS AND STOCHASTICITY

(a) Poincare plot of NIMROD diverted DIII-D magnetic field.
(b) Spatial distribution of runaway electrons

(a) (b)

E0 = 13 MeV, mono-pitch, θ0 = 8.6o.



SYNCHROTRON RADIATION IN THE PRESENCE OF
MAGNETIC ISLANDS AND STOCHASTICITY

3-D magnetic field effects on synchrotron spectra

E0 = 13 MeV θ0 = 8.6o NIMROD diverted DIII-D magnetic field



MODEL VALIDATION USING SYNCHROTRON RADIATION
MEASUREMENTS

I Our goal is to use KORC simulations and recent DIII-D
synchrotron radiation measurements to validate RE models.

I The experimental results correspond to DIII-D quiescent
plasma shot # 165826 reported in [Paz-Soldan, et al. Phys. of
Plasmas 25 056105 (2018); Phys. Rev. Lett. 118 255002 (2017)].
Visible camera image:
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RECENT MODELING STUDIES USING SOFT+CODE [*]

M. Hoppe et al
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3. Runaway electron radiation images in DIII-D

Comparing and validating models of runaway electron 
dynamics against experiments is of crucial importance in order 
for any confidence to put in the models. The strong depend-
ence on the distribution function seen in both synchrotron and 
bremsstrahlung emission, as discussed in the previous sec-
tion, makes both types of radiation attractive diag nostics for 
this purpose. In this section we start by solving the spatially 
homogeneous kinetic equation  numerically, taking plasma 
parameters from a DIII-D discharge as input, and use SOFT to 
compute the corresponding synchrotron and bremsstrahlung 
images. As the synthetic synchrotron images are found to dis-
agree with the experimental images, we assess the properties 
required by the distribution function for agreement. We con-
clude the section with an analysis of bremsstrahlung images, 
which we compare to experimental data and discuss similari-
ties and differences to synchrotron images.

We will analyze DIII-D discharge 165826 [36], a quies-
cent flattop runaway discharge [20] which is carried out in 
two phases. In the first, low-density phase the runaway elec-
tron population is steadily built up through mainly primary 
(Dreicer) generation. When the runaway electrons have 
reached a critical density, nitrogen and deuterium is injected 
to initiate the dissipation phase, during which primary run-
away electron generation ceases and effects such as avalanche 
generation and synchrotron/bremsstrahlung damping play a 
key role in the evolution of the runaway electron distribution 
function.

The fast synchrotron camera diagnostic used during the 
discharge was directed tangentially towards the plasma and 
detected all radiation emitted in a narrow band near wave-
length 890 nm. It shows a characteristic crescent synchrotron 

radiation spot shape, mainly originating from the HFS, with 
a maximum that is approximately vertically aligned with the 
magnetic axis, similar to what has been observed in other 
DIII-D low-density discharges [20].

For the following discussion we pick the synchrotron image 
corresponding to t  =  6.0732 s, which is shown in figure 3 and 
is representative for the discharge. The image reveals that most 
of the synchrotron radiation is seen on the HFS, which based 
on our discussion in section 2.2 suggests that the dominating 
runaway electrons emit most of their radiation at a wave-
length λc ≫ 890 nm. The relatively large vertical extent of 
the radiation also suggests that the dominating particles have 
pitch angles above θp ∼ 0.25 rad, an estimate that is arrived 
at through simulation of single-particle synchrotron radiation 
images.

(a)

(b)

Figure 3. Synchrotron radiation from runaway electrons observed at t  =  6.0732 s during DIII-D discharge 165826. (a) Synchrotron 
radiation mapped to the tangency plane with a wall cross-section and separatrix curve overlaid. The red marker indicates the location of the 
magnetic axis. (b) Synchrotron radiation in the pixel plane.

Figure 4. Temporal evolution during DIII-D discharge 165826 of 
the electron temperature Te, electron density ne (upper plot), toroidal 
electric field normalized to the critical electric field Ec, the effective 
charge of the plasma Zeff  and ratio of the collision to synchrotron 
damping time τ̂r  (lower plot).

Nucl. Fusion 58 (2018) 082001

M. Hoppe et al
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3.1. Kinetic modeling of the discharge

The temporal evolution of the 2D runaway electron momentum-
space distribution function during DIII-D discharge 165826 
was simulated using CODE [40, 41] by solving the spatially 
homogeneous kinetic equation, including electric-field accel-
eration, collisions modeled by a linearized Fokker–Planck 
operator, avalanche source and synchrotron-radiation reaction 
losses. Temporal profiles of electron temperature, density, 
toroidal electric field and plasma effective charge used in the 
calculation are shown in figure 4. All parameter profiles were 
measured at the magnetic axis, except for the electric field 
which was measured at the plasma edge. Because of this, the 
calculated momentum-space distribution function is formally 
only valid on the magnetic axis, but since the pitch-angles of 
most runaways in the resulting distribution are very small, 
so that trapping effects are negligible, we can use the same 
momentum-space distribution at all radii. We therefore take 
the obtained distribution function to be the distribution of run-
aways in the outer midplane. The electric field relaxation time 
is expected to be much shorter than the discharge time though, 

so that the radial profile of the electric field is expected to be 
approximately uniform.

In figure  5, the resulting distribution function and corre-
sponding synchrotron emission in momentum-space are 
shown. The relatively large number of runaway electrons with 
high energies causes the synchrotron emission to be dominated 
by runaway electrons with  ∼30 MeV energies and  ∼0.13 rad 
pitch angles. With bremsstrahlung we instead observe a dif-
ferent part of momentum-space, as the dominant runaways 
have energies around  ∼22 MeV and pitch-angles  ∼0.13 rad, 
as illustrated in figure 5(c).

3.2. Synchrotron radiation

The synthetic synchrotron image resulting from the distribu-
tion function in figure  5 is shown in figure  6 with four dif-
ferent radial density profiles applied to it, with the additional 
assumption that the momentum-space distribution is the same 
at all radii. As is seen in figure  6, the radiation originates 
mainly from the HFS, which should be due to the finite spectral 
range effect described in section 2.2. It is clear from figure 6 

(a) log10 f(p∥, p⊥) (b)

Synchrotron emission

(c) Bremsstrahlung

Figure 5. Plot of (a) the simulated distribution function described in section 3.1, (b) the synchrotron radiation emission in momentum-
space from the distribution function Fs in the wavelength interval λ ∈ [880, 900] nm and (c) the bremsstrahlung emission in momentum-
space from the distribution function Fb at photon energy 9 MeV, with Fs and Fb defined in equation (9).
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Figure 6. Synthetic synchrotron image resulting from the simulated distribution function figure 5(a). Four different radial density profiles 
have been applied to this image to discern the possible shape of the actual radial density profile. (a/e) Uniform/constant profile, cut off at 
r  =  50 cm. (b/f) Eighth-degree polynomial. (c/g) Linearly decreasing profile. (d/h) Exponentially decreasing profile. All profiles are plotted 
against minor radius, so that r  =  0 corresponds to the magnetic axis.

Nucl. Fusion 58 (2018) 082001
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RE ENERGY DISTRIBUTION FUNCTION

I The energy distribution of the RE is taken directly from the
experimental measurements in [Paz-Soldan, et al. Phys. Rev.
Lett. 118 255002 (2017)]
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I We sampled the RE energy from a fitted distribution of the form

fE(E) =
1

Γ(α)εα
Eα−1 exp

(
−E
ε

)
with α = 15.38 and ε = 0.50.



RE PITCH ANGLE DISTRIBUTION FUNCTION

I The pitch angle distributions is not well-resolved in
experiments and it is the focus of our model validation efforts.

I We assume a pitch angle distribution of the form

fθ(θ, E) =
A

2 sinhA
exp (A cos θ) ,

where

A = Â C p2√
p2 + 1

, C =
2Ē

Zeff + 1

I The normalized electric field and Zeff is taken from the
experiment, Ē = 4.0 and Zeff = 4.5.

I The value Â = 1 exactly corresponds to the standard
Fokker-Planck model based on the equilibration of electric
field acceleration and pitch angle scattering.

I In the validation study we will take Â as a free
parameter and study the dependence of the synchrotron
radiation on its value.



RE SPATIAL DISTRIBUTION FUNCTION

I We will assume an initial spatially homogeneous toroidal
distribution of RE with elliptical cross section with radius r0
matching the flux-surfaces (red curve).

I As expected, the radial drifts shift the distribution to the low
field side and spreads the beam boundary.
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I In the validation study we will take r0 as a free
parameter and study the dependence of the synchrotron
radiation on its value.



RADIATION POWER DISTRIBUTION FUNCTION

Synchrotron radiation per particle

PR(θ, E , λ,B0) =
1√
3

ce2

ε0λ3

(
mc2

E

)2 ∫ ∞

λc/λ
K5/3(η)dη

Weighted radiation power distribution

PR = fRE (θ, E)× PR(θ, E , λ,B0)

Total radiation power PT =
∫∞
0

∫ π
0 PR(θ, E , λ,B0) sin θdθdE4 6 8 10 12 14 16
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Measured SR comes mainly from RE with large pitch angles
and energies, i.e. the tails of the distribution (B0 = 1.8T)



MEASURED SPATIAL DISTRIBUTION OF SYNCHROTRON
RADIATION 1

I DIII-D quiscent plasma shot # 165826
I Visible camera image at t ≈ 5045 ms.
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1Paz-Soldan, et al. Phys. of Plasmas 25 056105 (2018).



PROPER ORTHOGONAL DECOMPOSITION
Singular Value Decomposition (SVD)

I Camera image represented as an NY × NX matrix Ic .

I The SVD decomposition of Ic is given by:

Ic = U S V T

where U and V are unitary matrices and S is a diagonal
matrix with the singular values.

I The columns of U, {u(k)}, and V , {v (k)} form a set of
orthonormal vectors and Ic can be written as the weighted,
ordered sum of separable matrices M(k)

Ic =
R∑

k=1

sku
(k) ⊗ v (k) =

R∑
k=1

skM
(k) ,

where R denotes the rank of Ic , and ⊗ is the tensor product.



PROPER ORTHOGONAL DECOMPOSITION
Low rank approximation: denoising and principal components

I For r < R, the low rank-r approximation of Ic is defined as

I
(r)
c =

r∑
k=1

skM
(k) ≈ Ic

I The Eckart-Young theorem guarantees that I
(r)
c is the best

rank-r approximation of Ic in the Frobenius norm

E (r) =

√∑
i ,j

∣∣∣Ic ij − I
(r)
c ij

∣∣∣2
I The low rank-r approximation denoises the image because it

eliminates the high order (low energy) modes.

I The low rank-r modes correspond to the principal
components, i.e. the modes that capture the main features of
the data (in terms of energy content).



PROPER ORTHOGONAL DECOMPOSITION:
IMAGE DENOISING

Rank-3 representation of pixel camera data
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MODEL VALIDATION STRATEGY

I We assume a pitch angle distribution of the form

fθ(θ, E) =
A

2 sinhA
exp (A cos θ) , A = Â C p2√

p2 + 1

and a spatially homogeneous toroidal distribution with
elliptical cross section of size r0.

I We consider Â and r0 as free parameters.

I The rest of the parameters are taken directly from the
experiment.

I The value Â = 1 exactly corresponds to the standard
Fokker-Planck model based on the equilibration of electric
field acceleration and pitch angle scattering.

I The goal is to search for the values of Â and r0 for which the
synthetic data obtained from KORC matches the experiment.



PROPER ORTHOGONAL DECOMPOSITION:
DOMINANT MODES

Rank-1 SVD modes of pixel camera data

Ic ≈ s1u
(1)(Z )⊗ v (1)(R)

I The use of the rank-1 SVD modes allows the possibility of
comparing the experimental and synthetic data using optimal
one-dimensional functions along the R and Z directions.



COMPARISON OF MEAN POSITION AND WIDTH OF
RADIATION SPOT

R =

∫
Rv (1)(R)dR∫
v (1)(R)dR

, ∆R =
2
∫

(R − R)2v (1)(R)dR∫
v (1)(R)dR

Z =

∫
Zu(1)(Z )dZ∫
u(1)(Z )dZ

∆Z =
2
∫

(Z − Z )2u(1)(Z )dZ∫
u(1)(Z )dZ
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COMPARISON OF SPATIAL DISTRIBUTION OF RADIATION
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Experiment

Model  A=3 r0=0.3
best fit

Model A=1 r0=0.5
worst fit
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Energy content of denoised  images Reconstruction error

I In the experiment Â ∼ (1, 5), inferred size of RE beam
r0 ∼ 0.25, inferred size from energy profile r0 ∼ 0.3
[Paz-Soldan, et al. Phys. Rev. Lett. 118 255002 (2017)]



MODEL VALIDATION USING LARGE-TIME PARTICLE
SIMULATIONS

I In the previous section we discussed model validation using
synchrotron emission data and KORC numerical simulations
that tracked RE in relatively short times ∼ 10µ sec.

I To complement this study we consider now simulations of
large ensembles of RE for times up to ∼ 35msec.

I The main goal is to validate if the Fokker-Planck pitch angle
distribution model remains an equilibrium distribution when
spatially-dependent orbit effects are included.

I The simulations include the electric field acceleration, the
geometry of the magnetic field using an EFIT magnetic
equilibrium, and collisions with the background plasma and
impurities incorporating the ne(r), Te(r) and Zeff (r) plasma
profiles.



PLASMA STATE

The profile information is used in the local (spatial) dependence of
the collisional frequencies on ne(r), Te(r) and Zeff (r).
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MODEL VALIDATION USING LARGE-TIME SIMULATIONS

I Since, as discussed before, the main contribution to the
measured radiation comes from the tails
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the initial energy and pitch-angle distribution is given by

FRE (θ, E , t = 0) =
fRE (θ, E)× PR(θ, E , λ,B0)

PT

where fRE is the RE distribution model, PR is the radiation
per particle and PT is the total radiation.

I Here fRE (θ, E) = fE(E)fθ(θ, E) where fE(E) is obtained from
the experiment and fθ(θ, E) is the Fokker-Planck model.

I The spatial distribution is taken as uniform.



MODEL VALIDATION USING LARGE-TIME SIMULATIONS
Departures from Fokker-Planck equilibrium distribution
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The departure of FRE (θ, E , t) from the initial condition indicates
that fRE (θ, E) = fE(E)fθ(θ, E), with Â = 1is not a solution
consistent with the full-orbit dynamics in this DIII-D plasma.



Low energy RE do not seem to depart significantly from the
Fokker-Planck model. However, higher energy RE rapidly depart
from the Fokker-Planck model Â = 1, and converge to Â ≈ 5.
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This is in agreement with KORC synchrotron synthetic diagnostic
and DIII-D measurenmts.



SPATIO-TEMPORAL DYNAMICS OF MEAN ENERGY AND
MEAN PITCH ANGLE

Mean values decrease and mean pitch angle peaks at the edge
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Statistics done of the the RE contributing to the observed
synchrotron radiation.



ENERGY DEPENDENCE OF RE DENSITY AND MEAN PITCH
ANGLE SPATIAL PROFILES

t = 0.05ms t = 35ms
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High energy RE rapidly depart from the Fokker-Planck model
Â = 1, and converge to Â ≈ 5.



CONCLUSIONS

I We have presented a validation study of pitch-angle dynamics
models based on 0-D 2-V Fokker-Planck descriptions

I The study was based on two complimentary calculations:
(i) synchrotron radiation spatial pattern
(ii) computation (large time) of RE orbits

I It was shown that KORC is able to quantitatively reproduce
the synchrotron radiation pattern observed in DIII-D quiescent
plasmas.

I In agreement with the experiments it is observed that the
Fokker-Planck model does not reproduce the observed and
computed decay of the pitch angle distribution (Â 6= 1).

I Long time-dependent KORC simulations show that the
0-D 2-V Fokker-Planck equilibrium distribution is not an
equilibrium distribution when spatial orbit effects are taken
into consideration


