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� How to measure the runaway distribution?
� Runaways emit bremsstrahlung & synchrotron
� Measured in most larger tokamaks

I Bremsstrahlung: hard X-rays (∼ MeV range)
I Synchrotron: visible & IR

� Give rise to “spots” in images
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Continuous acceleration
+ relativistic energy

=⇒ Radiation directed
along velocity vector

=⇒ Probes
� Radial position

� Pitch angle

� Energy



Alcator C-Mod

SOFT

SOFT

Synchrotron-detecting Orbit Following Toolkit

� Synthetic diagnostic for radiation
from runaways

� Real(istic) magnetic geometry
� Includes RE distribution
� Image/spectrum/Green’s function

Image/spectrum =

∫
W (x ,p)f (x ,p)dxdp
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dPdet

dλ
=

∫
n · n̂

r2 δ2
(r

r
− n

) d2P
dλdΩ

f (x ,p)dAdΩndxdp

� Integrate all emitted radiation d2P/dλdΩ

� ...with the distribution of particles f (x ,p)

� ...falling in along the line-of-sight n
� ...from particles within field-of-view Ωn (over lines-of-sight n)
� ...integrate over detector surface A
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Trick in SOFT: Use other coordinates for
∫
. . . dxdp

Parametrize using guiding-center orbits (µ conservation)

x →


ρ, Initial major radius (outer midplane)

τ, Time parameter along orbit

φ, Initial toroidal angle

p →


p(0)
‖ , Initial parallel momentum

p(0)
⊥ , Initial perpendicular momentum

ζ, Gyro-angle (averaged out)

Why?

� Guiding-center orbits =⇒ orders-of-magnitude faster computation

� Only need f (x ,p) in outer midplane (as given by e.g. FP solvers)
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How to handle the emission, d2P/dλdΩ?

Angular distribution:
d2P

dλdΩ
= . . . from e.g. Jackson, (1)

Cone model:
d2P

dλdΩ
=

1
2π

dP
dλ
δ (cosµ− cos θp) (2)

(1) (2)

α = Angle between particle velocity & line-of-sight
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How to handle the emission, d2P/dλdΩ?

Angular distribution:
d2P

dλdΩ
= . . . from e.g. Jackson, (1)

Cone model:
d2P

dλdΩ
=

1
2π

dP
dλ
δ (cosµ− cos θp) (2)

(∼ 10-100 times faster)

(1) (2)

α = Angle between particle velocity & line-of-sight



Elements of a
RE radiation image
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Specify momentum

(p, θp) = (p0, θ0)

What does the corresponding
image look like?

Edges much brighter than body

Radiation emitted on “surface”
(with thickness)!
=⇒ Line integration effect
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Radial location Pitch angle Energy

High energy:
P(λ) ∝

√
B
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Radial location Pitch angle Energy

Low energy:
P(λ) ∝ exp

[
− (Bc/B)1/3

]
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Bremsstrahlung

Synchrotron

log10 f (p‖, p⊥)

� Different generation mechanisms
I Bremsstrahlung: Collisions
I Synchrotron: Gyration

� Different windows into distribution
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� Low-density QRE in C-Mod

� B = 5.4 T on-axis

� Much synchrotron in visible range
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Understanding the synchrotron spot

1. Single energy (15 MeV), single pitch angle (0.15 rad)

2. CODE distribution function from plasma parameters

3. + simple radial distribution

4. Radial distribution fit
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� SOFT simulates runaway bremsstrahlung & synchrotron radiation

� Radiation highly sensitive to both spatial & velocity parts of runaway distribution

� Linearly polarized SR views same part part of distribution as unfiltered SR

� Non-uniform radial density needed to explain C-Mod image

Further reading:

[1] Hoppe M. et al., SOFT: a synthetic synchrotron diagnostic, Nucl. Fusion 58 026032 2018

[2] Hoppe M. et al., Interpretation of runaway electron synchrotron and bremsstrahlung images, Nucl. Fusion 58 082001 2018

[3] Tinguely R. A. et al., Measurements of runaway electron synchrotron spectra at high magnetic fields in Alcator C-Mod, Nucl. Fusion 58 076019 2018

SOFT and other runaway electron tools are freely available at http://ft.nephy.chalmers.se/retools

http://ft.nephy.chalmers.se/retools
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