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Machine Learning Disruption Predictor Overview

• Goal: To develop a robust, data-driven algorithm that successfully predicts disruption events with 
sufficient warning time 

• Databases of relevant parameters on DIII-D, Alcator C-Mod, EAST, and KSTAR

• Implemented a real-time predictor running in the plasma control system on DIII-D
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warning alarm
is triggered ~150 ms
before the disruption 
occurs

algorithm computing time ranges 
between 160-250 microseconds, 
with spikes depending on the tree 
depth evaluation for that particular 
sample
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Disruption Warning Database

• Focus on dataset of 1258 plasma discharges (disruptive & non-
disruptive) from DIII-D 2015 campaign (∼ 105 time samples)

Shot #164278
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Signal Description Variable Name

% error of plasma current and 
programmed current

(𝐼𝑝 − 𝐼𝑝𝑟𝑜𝑔)/𝐼𝑝

Poloidal beta 𝛽𝑝

Greenwald density fraction 𝑛/𝑛𝐺

Safety factor at 95% of minor 
radius

𝑞95

Plasma internal inductance ℓ𝑖

Radiated power fraction, 𝑃𝑟𝑎𝑑/𝑃𝑖𝑛𝑝𝑢𝑡

Loop voltage [𝑉] 𝑉𝑙𝑜𝑜𝑝

Stored plasma energy [𝐽] 𝑊𝑚ℎ𝑑

𝑛 = 1 mode amplitude 
normalized to 𝐵𝑡𝑜𝑟

Δ𝐵𝑛=1/𝐵𝜙

𝑇𝑒 profile width normalized to 
minor radius

𝑇𝑒/𝑎
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Binary Classification Based on Disruptive Phase Assumption

• Focus on dataset of 1258 plasma discharges (disruptive & non-
disruptive) from DIII-D 2015 campaign (∼ 105 time samples)

• Classify sample 𝑡 using class label threshold, 𝜏𝑐𝑙𝑎𝑠𝑠

• close to disruption (𝑡𝑑𝑖𝑠𝑟𝑢𝑝𝑡 − 𝑡 ≤ 𝜏𝑐𝑙𝑎𝑠𝑠) 

• far from disruption (either 𝑡𝑑𝑖𝑠𝑟𝑢𝑝𝑡 − 𝑡 > 𝜏𝑐𝑙𝑎𝑠𝑠 or

sample is from non-disruptive shot)

Shot #164278

Close to DisruptionFar from Disruption

Signal Description Variable Name

% error of plasma current and 
programmed current

(𝐼𝑝 − 𝐼𝑝𝑟𝑜𝑔)/𝐼𝑝

Poloidal beta 𝛽𝑝

Greenwald density fraction 𝑛/𝑛𝐺

Safety factor at 95% of minor 
radius

𝑞95

Plasma internal inductance ℓ𝑖

Radiated power fraction, 𝑃𝑟𝑎𝑑/𝑃𝑖𝑛𝑝𝑢𝑡

Loop voltage [𝑉] 𝑉𝑙𝑜𝑜𝑝

Stored plasma energy [𝐽] 𝑊𝑚ℎ𝑑

𝑛 = 1 mode amplitude 
normalized to 𝐵𝑡𝑜𝑟

Δ𝐵𝑛=1/𝐵𝜙

𝑇𝑒 profile width normalized to 
minor radius

𝑇𝑒/𝑎

𝑡𝑑𝑖𝑠𝑟𝑢𝑝𝑡 − 𝜏𝑐𝑙𝑎𝑠𝑠
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Classification of Time-Samples Using Random Forest

• Preliminary analysis – chose 𝜏𝑐𝑙𝑎𝑠𝑠 = 350 𝑚𝑠 based on physics parameter distributions

• Published time-sample classification results in recent Plasma Physics and Controlled Fusion

[C. Rea et al. PPCF 80 084004 (2018)]

close to disr
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Δ𝐵𝑛=1/𝐵𝜙

ℓ𝑖
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From Time-Sample Predictions to Real-Time Alarms

• Each tree in the random forest outputs 
one of two possible outputs:

• 0 (far from disruption)

• 1 (close to disruption)

• Final RF output is the average of the 
individual tree predictions – we call this 
the disruptivity

Random 
Forest

A
la

rm
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Δ𝐵𝑛=1

𝐵𝜙
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From Time-Sample Predictions to Real-Time Alarms

• Each tree in the random forest outputs 
one of two possible outputs:

• 0 (far from disruption)

• 1 (close to disruption)

• Final RF output is the average of the 
individual tree predictions – we call this 
the disruptivity

• How do we use the disruptivity to 
trigger an alarm?

• Trigger when disruptivity exceeds 
hysteresis threshold for a specific 
time window

Random 
Forest

A
la

rm

?
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Δ𝐵𝑛=1

𝐵𝜙
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Shot-by-Shot Binary Classification

• Classify each shot according to whether or not it disrupted:

• Disruption (positive class) or Non-disruption (negative class)

Was the alarm triggered?

Did the shot disrupt? Did the shot disrupt?

Yes

Yes Yes

No

No
No

False Positive True NegativeFalse NegativeTrue Positive
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Parameter Optimization

1. Time-Sample Class Label Threshold (𝜏𝑐𝑙𝑎𝑠𝑠)

2. Disruptivity Threshold (𝑑)

3. Time Window Size (𝑤)

RF level

Alarm level (post-processing)
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Parameter Optimization

1. Time-Sample Class Label Threshold (𝜏𝑐𝑙𝑎𝑠𝑠)

2. Disruptivity Threshold (𝑑)

3. Time Window Size (𝑤)

RF level

Alarm level (post-processing)

Training 
Set

Test 
Set
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Parameter Optimization

1. Time-Sample Class Label Threshold (𝜏𝑐𝑙𝑎𝑠𝑠)

2. Disruptivity Threshold (𝑑)

3. Time Window Size (𝑤)

• Need cross-validation process to ensure a robust performance metric and the model’s 
generalization capabilities

RF level

Alarm level (post-processing)

Training 
Set

Test 
Set

Training 
Set

Validation 
Set

Test 
Set

Optimize over loop
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K-Fold Cross Validation

For i in [1,5]:

For each class label time, τclass:

Train random forest on 𝑋 ≠ 𝑋(𝑖)
Get time-slice predictions on 𝑋 = 𝑋(𝑖)
For each disruptivity/window pair:

Test alarm simulation on 𝑋 = 𝑋(𝑖)
Calculate performance metrics

After loop:

Average performance metrics over all 5 

iterations for each parameter triplet

Pick best disruptivity threshold, window, and 

class label time (triplet that maximizes F1)

Pseudocode:
Validation

Validation

Validation

Validation

Validation
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Maximizing the F1 Score (Figure of Merit)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

F1 Score

• Grid Search:

• Disruptivity 𝑑 ∈ [0.1,0.95]

• Alarm Window 𝑤 ∈ 5,405 𝑚𝑠

• Class Label Time 𝜏𝑐𝑙𝑎𝑠𝑠 ∈ 25,800 𝑚𝑠

(Sensitivity to the 

disruptive class)

(Sensitivity to the non-

disruptive class)
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Maximizing the F1 Score (Figure of Merit)

F1 Score
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• Best operational point (with 
highest average F1 score): 

• Shorter alarm windows tend to 
yield better F1 scores

• Class label time threshold 
(𝜏𝑐𝑙𝑎𝑠𝑠 = 325𝑚𝑠) consistent with 
univariate analysis

𝑑,𝑤, 𝜏𝑐𝑙𝑎𝑠𝑠 = [0.65, 5𝑚𝑠, 325𝑚𝑠]
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75% of Test Set Disruptions Predicted > 40ms in Advance

• Trained random forest on entire training set using optimized 𝜏𝑐𝑙𝑎𝑠𝑠

• Tested random forest predictor on entire test set using optimized 𝑑,𝑤

Non-Disruptions (217)

True Negatives False Alarms

Disruptions (36)

Predicted Disruptions Missed Warnings

27

9215

2
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Test Set Interpretability
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𝑞95

𝑛 = 1 𝑛/𝑛𝐺

0

0.25

0.50

0.75

0.24

0.21

0.12

0.14 0.71

Average Contributions for all 
Predicted Disruptions

Δ𝐵𝑛=1

𝐵𝜙

𝑞95
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False Predictions

• Most false predictions show small or negative contributions from 𝑞95, the normalized 𝑛 = 1
radial field component, and/or 𝑛/𝑛𝐺

False Negative False Positive
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𝑛/𝑛𝐺

Δ𝐵𝑛=1/𝐵𝜙

Δ𝐵𝑛=1/𝐵𝜙
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Summary

• Our data-driven cross-validation procedure validates our univariate analysis of the distinction 
between ‘disruptive’ and ‘non-disruptive’ phases on plasma discharges 

• Of the 10 signals in our DIII-D 2015 database, the 3 most relevant are:

1. 𝑞95

2. Δ𝐵𝑛=1/𝐵𝜙

3. 𝑛/𝑛𝐺

• Our model runs at very low cost (low false positive rate), and predicts ≈ 75% of disruptions

Future Work

• Improve cross-validation procedure with a time-dependent metric, so that the ‘best’ operational 
point is a function of the physics parameters

• Compare results to an algorithm that incorporates time-dependency

• Test robustness of results by applying to larger database of different campaigns and facilities

• Expand set of input physics parameters
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Backup Slides
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Disruption Warning Database

• SQL databases with Matlab, IDL, and Python queries

• All disruptions included, regardless of cause

• ∼ 40 plasma parameters at each time sample/record

• Parameters potentially available in real time 

• During training, we avoid using…

o Non-causally filtered data

o Intentional disruptions

o Disruptions caused by hardware failure (specifically check for feedback control on plasma 
current or UFOs events)

o Time samples not in the flattop phase
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Device Discharges Time Samples

C-Mod 5507 498,925

EAST 14713 1,209,217

DIII-D 10258 2,356,519

KSTAR 4219 773083
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Random Forest

• An ensemble of many uncorrelated classification and regression trees

• At each node in the each tree, the data set is split on a random feature by minimizing impurity 
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Test Set Interpretability

• For feature vector 𝑥, can express disruptivity 𝑓(𝑥) as sum of 𝐾 feature contributions & bias term

• Tracking feature contributions can give idea of drivers of disruptive behavior
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Prediction function for a forest of J trees:

𝐹 𝑥 =
1

𝐽


𝑗=1

𝐽

𝑏𝑗 +

𝑘=1

𝐾
1

𝐽


𝑗=1

𝐽

𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑗(𝑥, 𝑘)

Prediction function for one tree:

𝑓 𝑥 = 𝑏 +

𝑘=1

𝐾

𝑐𝑜𝑛𝑡𝑟𝑖𝑏(𝑥, 𝑘)

𝟒

0.94
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Real-Time Implementation

• Has run continuously in 
DIII-D PCS for more than 
850 discharges

• 66% non-disruptive 

• 6% flattop 
disruptions

• 28% rampdown
disruptions

• Feature contributions 
potentially available in 
real time for 
interpretation

• Low false positive rate 
(< 4%) on non-
disruptive discharges
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