

Cross Validation and Interpretation of a Machine-Learning based Disruption Predictor on DIII-D

K. Montes, C. Rea, and R.S. Granetz

Theory and Simulation of Disruptions Workshop, PPPL July 17th 2018

Machine Learning Disruption Predictor Overview

- <u>Goal</u>: To develop a robust, data-driven algorithm that successfully predicts disruption events with sufficient warning time
- Databases of relevant parameters on DIII-D, Alcator C-Mod, EAST, and KSTAR
- Implemented a real-time predictor running in the plasma control system on DIII-D

Disruption Warning Database

Plasma Current [MA] 1.5 2.0

> 0└ 4.6

Shot #164278

4.7

4.8

- Focus on dataset of 1258 plasma discharges (disruptive & non-disruptive) from DIII-D 2015 campaign ($\sim 10^5$ time samples)

non-	Signal Description	Variable Name
-5)	% error of plasma current and programmed current	$(I_p - I_{prog})/I_p$
	Poloidal beta	eta_p
	Greenwald density fraction	n/n_G
	Safety factor at 95% of minor radius	q_{95}
	Plasma internal inductance	ℓ_i
	Radiated power fraction,	P_{rad}/P_{input}
	Loop voltage $[V]$	V_{loop}
	Stored plasma energy [J]	W_{mhd}
	n = 1 mode amplitude normalized to B_{tor}	$\Delta B^{n=1}/B_{\phi}$
5.2	T_e profile width normalized to minor radius	T_e/a

5

4.9

Time [s]

.....

5.1

Binary Classification Based on Disruptive Phase Assumption

- Focus on dataset of 1258 plasma discharges (disruptive & non-disruptive) from DIII-D 2015 campaign ($\sim 10^5$ time samples)
- Classify sample t using class label threshold, τ_{class}
 - close to disruption ($t_{disrupt} t \le \tau_{class}$)
 - far from disruption (either $t_{disrupt} t > \tau_{class}$ or sample is from non-disruptive shot)

Signal Description	Variable Name
% error of plasma current and programmed current	$(I_p - I_{prog})/I_p$
Poloidal beta	eta_p
Greenwald density fraction	n/n_G
Safety factor at 95% of minor radius	q_{95}
Plasma internal inductance	ℓ_i
Radiated power fraction,	P_{rad}/P_{input}
Loop voltage [V]	V_{loop}
Stored plasma energy [J]	W_{mhd}
n = 1 mode amplitude normalized to B_{tor}	$\Delta B^{n=1}/B_{\phi}$
T_e profile width normalized to minor radius	T _e /a

Classification of Time-Samples Using Random Forest

- Preliminary analysis chose $\tau_{class} = 350 ms$ based on physics parameter distributions
- Published time-sample classification results in recent Plasma Physics and Controlled Fusion

From Time-Sample Predictions to Real-Time Alarms

- Each tree in the random forest outputs one of two possible outputs:
 - 0 (far from disruption)
 - 1 (close to disruption)
- Final RF output is the average of the individual tree predictions we call this the **disruptivity**

From Time-Sample Predictions to Real-Time Alarms

- Each tree in the random forest outputs one of two possible outputs:
 - 0 (far from disruption)
 - 1 (close to disruption)
- Final RF output is the average of the individual tree predictions we call this the **disruptivity**
- How do we use the disruptivity to trigger an alarm?
 - Trigger when disruptivity exceeds hysteresis threshold for a specific time window

Shot-by-Shot Binary Classification

- Classify each shot according to whether or not it disrupted:
- **Disruption** (positive class) or **Non-disruption** (negative class)

Parameter Optimization

Parameter Optimization

Parameter Optimization

• Need cross-validation process to ensure a robust performance metric and the model's generalization capabilities

K. Montes – Theory and Simulation of Disruptions Workshop, PPPL, July 17 2018

K-Fold Cross Validation

Maximizing the F1 Score (Figure of Merit)

Maximizing the F1 Score (Figure of Merit)

Best operational point (with highest average F1 score):

 $[d, w, \tau_{class}] = [0.65, 5ms, 325ms]$

- Shorter alarm windows tend to yield better F1 scores
- Class label time threshold $(\tau_{class} = 325ms)$ consistent with univariate analysis

75% of Test Set Disruptions Predicted > 40ms in Advance

- Trained random forest on entire training set using optimized τ_{class}
- Tested random forest predictor on entire test set using optimized d, w

Test Set Interpretability

Shot #163052

K. Montes – Theory and Simulation of Disruptions Workshop, PPPL, July 17 2018

False Predictions

• Most false predictions show small or negative contributions from q95, the normalized n = 1 radial field component, and/or n/n_G

K. Montes – Theory and Simulation of Disruptions Workshop, PPPL, July 17 2018

Summary

- Our data-driven cross-validation procedure validates our univariate analysis of the distinction between 'disruptive' and 'non-disruptive' phases on plasma discharges
- Of the 10 signals in our DIII-D 2015 database, the 3 most relevant are:
 - *1. q*95
 - 2. $\Delta B^{n=1}/B_{\phi}$
 - 3. n/n_G
- Our model runs at very low cost (low false positive rate), and predicts $\approx 75\%$ of disruptions

Future Work

- Improve cross-validation procedure with a time-dependent metric, so that the 'best' operational point is a function of the physics parameters
- Compare results to an algorithm that incorporates time-dependency
- Test robustness of results by applying to larger database of different campaigns and facilities
- Expand set of input physics parameters

Backup Slides

Disruption Warning Database

- SQL databases with Matlab, IDL, and Python queries
- All disruptions included, regardless of cause
- ~ 40 plasma parameters at each time sample/record
- Parameters potentially available in real time
- During training, we avoid using...
 - Non-causally filtered data
 - \circ Intentional disruptions
 - Disruptions caused by hardware failure (specifically check for feedback control on plasma current or UFOs events)
 - \circ Time samples not in the flattop phase

Device	Discharges	Time Samples
C-Mod	5507	498,925
EAST	14713	1,209,217
DIII-D	10258	2,356,519
KSTAR	4219	773083

Random Forest

- An ensemble of many uncorrelated classification and regression trees
- At each node in the each tree, the data set is split on a random feature by **minimizing impurity**

Test Set Interpretability

- For feature vector x, can express **disruptivity** f(x) as sum of K feature contributions & bias term
- Tracking feature contributions can give idea of drivers of disruptive behavior

K. Montes – Theory and Simulation of Disruptions Workshop, PPPL, July 17 2018

Real-Time Implementation

- Has run continuously in DIII-D PCS for more than 850 discharges
 - 66% non-disruptive
 - 6% flattop disruptions
 - 28% rampdown disruptions
- Feature contributions potentially available in real time for interpretation
- Low false positive rate (< 4%) on nondisruptive discharges

